计算机科学 ›› 2020, Vol. 47 ›› Issue (6A): 340-343.doi: 10.11896/JsJkx.190500169

• 信息安全 • 上一篇    下一篇

网络安全态势感知研究现状与发展趋势的图谱分析

白雪, 努尔布力, 王亚东   

  1. 新疆大学信息科学与工程学院 乌鲁木齐 830046
  • 发布日期:2020-07-07
  • 通讯作者: 努尔布力(nurbol@xJu.edu.cn)
  • 作者简介:409429237@qq.com
  • 基金资助:
    国家自然基金重点项目(重大联合)(61433012);新疆维吾尔自治区创新环境建设专项项目(PT1811)

Map Analysis for Research Status and Development Trend on Network Security Situational Awareness

BAI Xue, Nurbol and WANG Ya-dong   

  1. School of Information Science and Engineering,XinJiang University,Urumqi 830046,China
  • Published:2020-07-07
  • About author:BAI Xue, born in 1993, postgraduate, is a member of China Computer Federation.Her main research interests include network security and data visua-lization.
    Nurbol, born in 1981, Ph.D, professor, is a member of China Computer Federation.His main research interests include network security and data mining.
  • Supported by:
    This work was supported by the Key Program of the National Natural Science Foundation of China (61433012) and Special Foundation for Innovative Environment Construction of XinJiang Province (PT1811).

摘要: 文中以Web of Science中1999-2019年收录的2456篇以网络安全态势感知为主题的文献作为数据来源,主要运用 CiteSpace可视化工具,基于图谱对国家与机构合作、文献共被引、关键词共现等进行分析,并分析了国际上该领域的研究热点及研究脉络。研究发现,网络安全态势感知在理论方面需要加强形成体系,并进一步深入研究;应用方面对于多源数据融合的研究较为成熟,但对态势实时感知可视化方面提出了更多的挑战。文中分析结果有助于为该领域的研究人员做进一步深层研究提供参考。

关键词: 网络安全, 态势感知, CiteSpace, 可视分析, 知识图谱

Abstract: Taking 2456 papers on network security situational awareness included in Web of Science from 1999 to 2019 as data sources,and mainly using CiteSpace visualization tools,this paper analyzes the international research hotspots and research context in this field by analyzing cooperation between countries and institutions,literature co-citation,keyword co-occurrence.The research finds that the network security situation awareness needs to strengthen the theoretical formation of a system for further in-depth research.In terms of application,the research on multi-source data fusion is relatively mature,but it poses more research challenges to the visualization of real-time situational awareness.The analysis results are helpful for the researchers in this field to do further research.

Key words: Network security, Situational awareness, CiteSpace, Visual analysis, Knowledge graph

中图分类号: 

  • TP393
[1] CHEN Y,CHEN C M,LIU Z Y,et al.The methodology function of CiteSpace mapping knowledge domains .Studies in Science of Science,2015,33(2):242-253.
[2] CHEN C M.CiteSpace II:Detecting and visualizing emerging trends and transient patterns in scientific literature .Journal of the Association for Information Science & Technology,2014,57(3):359-377.
[3] CHEN H,CHEN G,BLASCH E.Analysis and visualization of large complex attack graphs for networks security//Defense &Security Symposium.International Society for Optics and Photonics,2007.
[4] SALMON P M,STANTON N A,WALKER G H,et al.Is it really better to share? Distributed situation awareness and its implications for collaborative system design .Theoretical Issues in Ergonomics Science,2010,11(1/2):58-83.
[5] BASS T.Intrusion Detection Systems and Multisensor Data Fusion:Creating Cyberspace Situational Awareness.Communications of the ACM,2000,43(4):99-105.
[6] SHIFFLET J.A Technique Independent Fusion Model For Network Intrusion Detection.Proceedings of the Mid states Conference on Undergraduate Research in Computer Science and Mathematics,2005,3(1):13-19.
[7] ENDSLEY M R.Situation awareness misconceptions and misunderstandings.Journal of Cognitive Engineering & Decision Making,2015,9(1):4-32.
[8] SHIRAVI H,SHIRAVI A,GHORBANI A A.A survey of visua-lization systems for network security .Visualization and Computer Graphics,2012,18(8):1313-1329.
[9] GONG J,ZANG X D,SU Q,et al.Survey of Network Security Situation Awareness .Journal of Software,2017,28(4):1010-1026.
[10] LIN H L,WANG Y Z,JIA Y T,et al.Network big data oriented knowledge fusion methods:A survey .Chinese Journal of Computers,2017,40(1):1-27.
[11] FRANKE U,BRYNIELSSON J.Cyber situational awareness-A systematic review of the literature .Computers & Security,2014,46(1):18-31.
[12] GUANG K,SHUO W,GUANGMING T.Research on Key Technologies of Network Security Situational Awareness for Attack Tracking Prediction.Chinese Journal of Electronics,2019,28(1):162-171.
[13] BEAVER J,STEED C,PATTON R,et al.Visualization techniques for computer network defense.Proc.of the SPIE Int’l Society for Optical Engineering,2011,8019(18):6-9.
[14] WANG H Q,LAI J B,ZHU L,et al.Survey of network situation awareness system.Journal of Computer Science,2006,33(10):5-10.
[1] 李欣, 段詠程. 基于改进隐马尔可夫模型的网络安全态势评估方法[J]. 计算机科学, 2020, 47(7): 287-291.
[2] 梁俊斌, 张敏, 蒋婵. 社交传感云安全研究进展[J]. 计算机科学, 2020, 47(6): 276-283.
[3] 白玮, 潘志松, 夏士明, 成昂轩. 基于遗传算法的网络安全配置自动生成框架[J]. 计算机科学, 2020, 47(5): 306-312.
[4] 李鑫超, 李培峰, 朱巧明. 一种基于改进向量投影距离的知识图谱表示方法[J]. 计算机科学, 2020, 47(4): 189-193.
[5] 相颖, 冯钧, 夏珮珮, 陆佳民. 基于Bootstrapping的水利空间关系词提取[J]. 计算机科学, 2020, 47(12): 131-138.
[6] 王海涛, 宋丽华, 向婷婷, 刘力军. 人工智能发展的新方向——人机物三元融合智能[J]. 计算机科学, 2020, 47(11A): 1-5.
[7] 肖勇, 钱斌, 周密. 基于语义关联的电力计量跨媒体知识图谱构建方法[J]. 计算机科学, 2020, 47(11A): 126-131.
[8] 张春霞, 彭成, 罗妹秋, 牛振东. 数学课程知识图谱构建及其推理[J]. 计算机科学, 2020, 47(11A): 573-578.
[9] 李忠文, 丁烨, 花忠云, 李君一, 廖清. 结合三元组重要性的知识图谱补全模型[J]. 计算机科学, 2020, 47(11): 231-236.
[10] 陈晓军, 向阳. 企业风险知识图谱的构建及应用[J]. 计算机科学, 2020, 47(11): 237-243.
[11] 刘海波,武天博,沈晶,史长亭. 基于GAN-LSTM的APT攻击检测[J]. 计算机科学, 2020, 47(1): 281-286.
[12] 陈晓军, 向阳. STransH:一种改进的基于翻译模型的知识表示模型[J]. 计算机科学, 2019, 46(9): 184-189.
[13] 齐斌,王宇,邹红霞,李冀兴. 基于认知诊断理论的网络安全自适应测试技术[J]. 计算机科学, 2019, 46(7): 102-107.
[14] 李鹏飞, 陈鸣, 邓理, 钱红燕. 一种基于NFV的检测OSPF双LSA攻击的方法[J]. 计算机科学, 2019, 46(6A): 343-347.
[15] 冯贵兰, 李正楠, 周文刚. 大数据分析技术在网络领域中的研究综述[J]. 计算机科学, 2019, 46(6): 1-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 雷丽晖,王静. 可能性测度下的LTL模型检测并行化研究[J]. 计算机科学, 2018, 45(4): 71 -75 .
[2] 孙启,金燕,何琨,徐凌轩. 用于求解混合车辆路径问题的混合进化算法[J]. 计算机科学, 2018, 45(4): 76 -82 .
[3] 张佳男,肖鸣宇. 带权混合支配问题的近似算法研究[J]. 计算机科学, 2018, 45(4): 83 -88 .
[4] 伍建辉,黄中祥,李武,吴健辉,彭鑫,张生. 城市道路建设时序决策的鲁棒优化[J]. 计算机科学, 2018, 45(4): 89 -93 .
[5] 史雯隽,武继刚,罗裕春. 针对移动云计算任务迁移的快速高效调度算法[J]. 计算机科学, 2018, 45(4): 94 -99 .
[6] 周燕萍,业巧林. 基于L1-范数距离的最小二乘对支持向量机[J]. 计算机科学, 2018, 45(4): 100 -105 .
[7] 刘博艺,唐湘滟,程杰仁. 基于多生长时期模板匹配的玉米螟识别方法[J]. 计算机科学, 2018, 45(4): 106 -111 .
[8] 耿海军,施新刚,王之梁,尹霞,尹少平. 基于有向无环图的互联网域内节能路由算法[J]. 计算机科学, 2018, 45(4): 112 -116 .
[9] 崔琼,李建华,王宏,南明莉. 基于节点修复的网络化指挥信息系统弹性分析模型[J]. 计算机科学, 2018, 45(4): 117 -121 .
[10] 王振朝,侯欢欢,连蕊. 抑制CMT中乱序程度的路径优化方案[J]. 计算机科学, 2018, 45(4): 122 -125 .