计算机科学 ›› 2020, Vol. 47 ›› Issue (6A): 79-83.doi: 10.11896/JsJkx.191000158

• 人工智能 • 上一篇    下一篇

基于模糊信息分解与控制规则的移动机器人沿墙导航

方梦琳1, 唐文兵1, 黄鸿云2, 丁佐华1   

  1. 1 浙江理工大学信息学院 杭州 310018;
    2 浙江理工大学图书馆多媒体大数据中心 杭州 310018
  • 发布日期:2020-07-07
  • 通讯作者: 丁佐华(zouhuading@hotmail.com)
  • 作者简介:menglinfang@126.com
  • 基金资助:
    国家自然科学基金项目(61210004,61170015)

Wall-following Navigation of Mobile Robot Based on Fuzzy-based Information Decomposition and Control Rules

FANG Meng-lin1, TANG Wen-bing1, HUANG Hong-yun2 and DING Zuo-hua1   

  1. 1 School of Information Science and Technology, ZheJiang Sci-Tech University, Hangzhou 310018, China
    2 Center of Multimedia Big Data of Library, ZheJiang Sci-Tech University, Hangzhou 310018, China
  • Published:2020-07-07
  • About author:FANG Meng- lin, born in 1994, postgraduate.Her current research interests include robot intelligent control and machine learning.
  • Supported by:
    This work was supported by the National National Natural Science Foundation of China (61210004,61170015).

摘要: 由于机器人导航任务对实时性要求高,以及机器人自身的非线性导致很难精确建模,而基于规则的控制可解释性好,可以实时响应。因此,文中提出了一种基于模糊信息分解(Fuzzy-based Information Decomposition,FID)与控制规则的机器人沿墙导航方法。在UCI机器人导航数据集上,首先用FID对原始类别不平衡数据集进行过采样,之后训练支持向量机(SVM),然后从SVM中提取控制规则。在提取规则过程中,仅使用支持向量以减少规则数量和提高实时性,使用这些支持向量训练随机森林,然后从中提取控制规则。实验结果表明,在相同数据集上,相较于决策树等6个经典模型,所提方法的平均F1值为0.994,对小类样本的召回率平均提升8.09%。与其他提取规则的模型相比,从SVM中提取规则的方法能平均减少171.33条规则,在测试样本上的平均单个样本决策时间仅为3.145μs。

关键词: 控制规则, 类别不平衡, 模糊信息分解, 支持向量机

Abstract: Due to the high real-time requirements of robot navigation task and the nonlinearity of the robot itself,it is difficult to model accurately,and the rule-based control has good interpretability and real-time response generally.Therefore,a method of robot wall-following navigation based on fuzzy-based information decomposition (FID) and control rules is proposed.In UCI robot navigation data set,the original classimbalanced data set is over-sampled by FID,and then SVM is trained,and control rules are extracted from SVM.In the process of extracting rules,only support vectors are used to reduce the number of rules and improve the real-time performance.These support vectors are used to train the random forest,which is applied to extract control rules.The experimental results show that,on the same data set,the average F1 score of the proposed method is 0.994,and the recall rate of the minority class increases by 8.09% on average,compared with the six classic models such as decision tree.Compared with other rule extraction models,the rule extraction method from SVM can reduce 171.33 rules on average,and the average decision time per sample on the test sample is only 3.145μs.

Key words: Class imbalance, Control rules, Fuzzy-based information decomposition, Support vector machine

中图分类号: 

  • TP242.6
[1] YERSHOVA A,TOVAR B,GHRISTR,et al.Mapping andPursuit-Evasion Strategies For a Simple Wall-Following Robot.IEEE Transactions on Robotics,2011,27(1):113-128.
[2] FREIRE A L,BARRETO G A,VELOSO M,et al.Short-term memory mechanisms in neural networklearning of robot navigation tasks:A case study//Robotics Symposium (LARS).Latin American:IEEE,2009:1-6.
[3] AMBROSIO R D,IANNELLO G,SODA P.A One-per-Class reconstruction rule for class imbalance learning//International Conference on Pattern Recognition.IEEE,2012:1310-1313.
[4] ALI A,SHAMSUDDIN S M,RALESCUA L.Classificationwith class imbalance problem:a review.Int.J.Advance Soft Compu.Appl.,2015,7(3):176-204.
[5] MAHMOOD A M.Class Imbalance Learning inData Mining-A Survey.International Journal of Communication Technology for Social Networking Services,2015,3(2):17-38.
[6] LIU S,ZHANG J,XIANGY,et al.Fuzzy-based information decomposition for incomplete and imbalanced data learning.IEEE Transactionson Fuzzy Systems,2017,25(6):1476-1490.
[7] DASH T,NAYAK T,SWAIN R R.ControllingWall-following Robot Navigation Based on Gravitational Search and Feed Forward Neural Network//Proceedings of the 2nd International Conference on Perception and Machine Intelligence.New York:ACM,2015:196-200.
[8] DASH T,SWAIN R R,NAYAK T.Automatic Navigation ofWall-following Mobile Robot Using a Hybrid Metaheuristic assisted Neural Network.Data Science,2017:1-17.
[9] MADI S,BABA-ALI R.Classification Techniquesfor Wall-Following Robot Navigation:A Comparative Study//International Conference on Advanced Intelligent Systems and Informatics.Springer,Cham,2018:98-107.
[10] HAN L,LUO S,YU J,et al.Rule Extraction From SupportVector Machines Using Ensemble Learning Approach:An Application for Diagnosis of Diabetes.IEEE Journal of Biomedical and Health Informatics,2014,19(2):728-734.
[11] BARAKAT N H,BRADLEY A P.Rule Extraction from Support Vector Machines:A Sequential Covering Approach.IEEE Transactions on Knowledge and Data Engineering,2007,19(6):729-741.
[12] SINGH N H,THONGAMK.Fuzzy Logic-genetic Algorithm-neural Network for Mobile Robot Navigation:A Survey.International Research Journal of Engineering and Technology (IRJET),2017,4(8):24-45.
[13] CHOPRA S,MITRA R,KUMAR V.Fuzzy controller:choosing an appropriate and smallest rule set.International Journal of Computational Cognition,2005,3(4):73-78.
[14] BARAKAT N,BRADLEYA P.Rule extraction from supportvector machines:a review.Neurocomputing,2010,74(1/2/3):178-190.
[15] SILVA E J R,ZANCHETTIN C.On the existence of a threshold in class imbalance problems//2015 IEEE International Conference on Systems,Manand Cybernetics.IEEE,2015:2714-2719.
[16] DASH T,SAHU S R,NAYAK T,et al.NeuralNetwork Ap-proach to Control Wall-following Robot Navigation//IEEE International Conference on Advanced Communications,Control and Computing Technologies.Piscataway:IEEE,2014:1072-1076.
[17] SINGH M K,PARHI D R.IntelligentNeuro Controllerfor Navigation of Mobile Robot//Proceedings ofthe International ConferenceonAdvances in Computing,Communication and Control.New York:ACM,2009:123-128.
[18] CRAVEN M,SHAVLIK J W.Extracting Tree Structured Representations of Trained Networks//Advances in Neural Information Processing Systems.Colorado:MIT Press,1996:24-30.
[19] EFTEKHARY M,GHOLAMI P,SAFARI S,et al.RankinGnormalization Methods for Improving the Accuracy of SVM Algorithm by DEA Method.Modern Applied Science,2012,6(10):26-36.
[20] MARTENS D,BAESENSB,GESTEL T V,et al.Comprehensible Credit Scoring Models Using Rule Extraction from Support VectorMachines.European Journal of Operational Research,2007,183(3):1466-1476.
[21] BEBEN L,SNIEZYNSKI B,TUREK W,et al.Architecture of an Erlang-Based Learning System for Mobile Robot Control//Proceedings of the 5th International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems.2012:45-48.
[22] GEHRKE J,GANTI V,RAMAKRISHNAN R,et al.BOAT-optimistic Decision Tree Construction.ACM SIGMOD Record,1999,28(2):169-180.
[23] MANWANI N,SASTRY P S.Geometric Decision Tree.IEEE Transactions on Systems,Manand Cybernetics,Part B(Cybernetics),2011,42(1):181-192.
[1] 侯夏晔, 陈海燕, 张兵, 袁立罡, 贾亦真.
一种基于支持向量机的主动度量学习算法
Active Metric Learning Based on Support Vector Machines
计算机科学, 2022, 49(6A): 113-118. https://doi.org/10.11896/jsjkx.210500034
[2] 单晓英, 任迎春.
基于改进麻雀搜索优化支持向量机的渔船捕捞方式识别
Fishing Type Identification of Marine Fishing Vessels Based on Support Vector Machine Optimized by Improved Sparrow Search Algorithm
计算机科学, 2022, 49(6A): 211-216. https://doi.org/10.11896/jsjkx.220300216
[3] 陈景年.
一种适于多分类问题的支持向量机加速方法
Acceleration of SVM for Multi-class Classification
计算机科学, 2022, 49(6A): 297-300. https://doi.org/10.11896/jsjkx.210400149
[4] 邢云冰, 龙广玉, 胡春雨, 忽丽莎.
基于SVM的类别增量人体活动识别方法
Human Activity Recognition Method Based on Class Increment SVM
计算机科学, 2022, 49(5): 78-83. https://doi.org/10.11896/jsjkx.210400024
[5] 武玉坤, 李伟, 倪敏雅, 许志骋.
单类支持向量机融合深度自编码器的异常检测模型
Anomaly Detection Model Based on One-class Support Vector Machine Fused Deep Auto-encoder
计算机科学, 2022, 49(3): 144-151. https://doi.org/10.11896/jsjkx.210100142
[6] 侯春萍, 赵春月, 王致芃.
基于自反馈最优子类挖掘的视频异常检测算法
Video Abnormal Event Detection Algorithm Based on Self-feedback Optimal Subclass Mining
计算机科学, 2021, 48(7): 199-205. https://doi.org/10.11896/jsjkx.200800146
[7] 郭福民, 张华, 胡瑢华, 宋岩.
一种基于表面肌电信号的腕部肌力估计方法研究
Study on Method for Estimating Wrist Muscle Force Based on Surface EMG Signals
计算机科学, 2021, 48(6A): 317-320. https://doi.org/10.11896/jsjkx.200600021
[8] 卓雅倩, 欧博.
噪声环境下的人脸防伪识别算法研究
Face Anti-spoofing Algorithm for Noisy Environment
计算机科学, 2021, 48(6A): 443-447. https://doi.org/10.11896/jsjkx.200900207
[9] 雷剑梅, 曾令秋, 牟洁, 陈立东, 王淙, 柴勇.
基于整车EMC标准测试和机器学习的反向诊断方法
Reverse Diagnostic Method Based on Vehicle EMC Standard Test and Machine Learning
计算机科学, 2021, 48(6): 190-195. https://doi.org/10.11896/jsjkx.200700204
[10] 王友卫, 朱晨, 朱建明, 李洋, 凤丽洲, 刘江淳.
基于用户兴趣词典和LSTM的个性化情感分类方法
User Interest Dictionary and LSTM Based Method for Personalized Emotion Classification
计算机科学, 2021, 48(11A): 251-257. https://doi.org/10.11896/jsjkx.201200202
[11] 曹素娥, 杨泽民.
基于聚类分析算法和优化支持向量机的无线网络流量预测
Prediction of Wireless Network Traffic Based on Clustering Analysis and Optimized Support Vector Machine
计算机科学, 2020, 47(8): 319-322. https://doi.org/10.11896/jsjkx.190800075
[12] 徐翔燕, 侯瑞环.
基于GM(1,1)-SVM组合模型的中长期人口预测研究
Medium and Long-term Population Prediction Based on GM(1,1)-SVM Combination Model
计算机科学, 2020, 47(6A): 485-487. https://doi.org/10.11896/JsJkx.190900168
[13] 马创, 吕孝飞, 梁炎明.
基于GA-SVM的农产品质量分类
Agricultural Product Quality Classification Based on GA-SVM
计算机科学, 2020, 47(6A): 517-520. https://doi.org/10.11896/JsJkx.190900184
[14] 宋岩, 胡瑢华, 郭福民, 袁新亮, 熊睿洋.
基于sEMG的改进SVM+BP肌力预测分层算法
Improved SVM+BP Algorithm for Muscle Force Prediction Based on sEMG
计算机科学, 2020, 47(6A): 75-78. https://doi.org/10.11896/JsJkx.190900143
[15] 潘恒, 李景峰, 马君虎.
可抵御内部威胁的角色动态调整算法
Role Dynamic Adjustment Algorithm for Resisting Insider Threat
计算机科学, 2020, 47(5): 313-318. https://doi.org/10.11896/jsjkx.190800051
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!