计算机科学 ›› 2018, Vol. 45 ›› Issue (3): 182-188.doi: 10.11896/j.issn.1002-137X.2018.03.029

• 人工智能 • 上一篇    下一篇

基于相似性匹配和聚类的K线模式可盈利性研究

吕涛,郝泳涛   

  1. 同济大学电子与信息工程学院 上海200092,同济大学电子与信息工程学院 上海200092
  • 出版日期:2018-03-15 发布日期:2018-11-13
  • 基金资助:
    本文受“十二五”国家科技支撑计划项目(2015BAF10B01),上海市科委基础研究项目(14JC1402203)资助

Study on K-line Patterns’ Profitability Based on Similarity Match and Clustering

LV Tao and HAO Yong-tao   

  • Online:2018-03-15 Published:2018-11-13

摘要: K线模式是股票短期投资中最常用的技术分析工具,但学术界却对K线模式的可盈利性存在争议。为了客观评价K线模式的可盈利性,提出从数据挖掘的角度出发,采用模式识别、模式聚类和模式知识挖掘的方法来对K线模式的盈利能力进行研究。为此,首先定义了K线序列的相似性匹配模型来解决K线模式的相似性匹配问题;然后,定义了K线序列的最近邻聚类算法来解决K线模式的聚类问题;最后,定义了K线模式盈利能力度量模型来对K线模式不同形态的利能力进行分析。实验采用近11年上证180指数成份股的数据作为测试数据集,对白三兵和黑三鸦这两个模式的盈利能力进行分析。实验结果表明:同一个K线模式的不同形态的盈利能力差别很大,有时甚至完全相反,这是K线模式可盈利性产生争议的一个主要原因。为了解决这一争议并提高基于K线模式的股票投资效果,亟需根据形态特征对现有的每一个K线模式做进一步分类,并提供更加严谨的模式定义。

关键词: K线,K线序列,K线模式,相似性匹配,聚类,可盈利性

Abstract: K-line pattern is the most popular technical analysis method for short term stock investment.However,there are some disputes about the K-line patterns’ profitability in academia.To resolve the debate,this paper used the method of pattern recognition,pattern clustering and pattern knowledge mining to study the profitability of K-line patterns.Therefore,firstly,the similarity match model was proposed for solving the problem of similarity match of K-line pattern.Secondly,the nearest neighbor-clustering algorithm was proposed for solving the problem of clustering of K-line pattern.Finally,the measurement model of K-line pattern’s profitability was defined for measuring the profitability of a K-line pattern’s different shapes.In the experiment,the profitability of three white soldiers pattern and three black crows pattern was analyzed with the testing dataset of the K-line series data of Shanghai 180 index component stocks over the latest 11 years.Experimental results show that the main reason for the debate is that the profitability of one pattern varies a great deal for different shapes and they are even opposite at sometimes.There is a need to further classify each of the existing K-line patterns based on the shape feature and give their strict mathematical definitions for improving the profitability and resolving the disputes.

Key words: Candlestick chart,K-line series,K-line pattern,Similarity match,Cluster,Profitability

[1] NISON S.Japanese Candlestick Charting Techniques:A Con-temporary Guide to the Ancient Investment Technique of the Far East [M].New York:New York Technique of the Far East,1991:30-40.
[2] CAGINALP G,LAURENT H.The Predictive Power of Price Patterns [J].Applied Mathematical Finance 1998,5(3-4):181-205.
[3] GOO Y J,CHEN D H,CHANG Y W.The application of Japanese candlestick trading strategies in Taiwan[J].Inverstment Management and Financial Innovations,2007,4(4):49-67.
[4] LU T H,SHIU Y M.Tests for Two Day Candlestick Patterns in the Emerging Equity Market of Taiwan [J].Emerging Markets Finance & Trade,2012,48(1):41-57.
[5] LU T H,CHEN J.Candlestick charting in European stock markets [J].Jassa:The Finsia Journal of Applied Finance,2013(2):20-25.
[6] MARSHALL B R,YOUNG M R,ROSE L C.Candlestick technical trading strategies:Can they create value for investors? [J].Journal of Banking & Finance,2006,30(8):2303-2323.
[7] MARSHALL B R,YOUNG M R,CAHAN R.Are candlestick technical trading strategies profitable in the Japanese equity market? [J].Review of Quantitative Finance & Accounting,2008,31(2):191-207.
[8] HORTON M J.Stars,crows,and doji:The use of candlesticks in stock selection [J].Quarterly Review of Economics & Finance,2009,49(2):283-294.
[9] FOCK J H,KLEIN C,ZWERGEL B.Performance of Candle-stick Analysis on Intraday Futures Data [J].Journal of Derivatives,2005,13(1):28-40.
[10] DUVINAGE M,MAZZA P,PETITJEAN M.The intra-dayperformance of market timing strategies and trading systems based on Japanese candlesticks[J].Quantitative Finance,2013,13(7):1059-1070.
[11] LU T H.The profitability of candlestick charting in the Taiwanstock market [J].Pacific-Basin Finance Journal,2014,26(26):65-78.
[12] LU T H,CHEN Y C,HSU Y C.Trend definition or holdingstrategy:What determines the profitability of candlestick charting?[J].Journal of Banking & Finance,2015,61:172-183.
[13] TSAI C F,QUAN Z Y.Stock Prediction by Searching for Similarities in Candlestick Charts[J].Acm Transactions on Mana-gement Information Systems,2014,5(2):1-21.
[14] CHMIELEWSKI L,JANOWICZ M,KALETA J,et al.Pattern Recognition in the Japanese Candlesticks[C]∥Advances in Intelligent Systems and Computing.Miedzyzdroje:Springer Press,2015:227-234.
[15] MORRIS G L,LITCHFIELD R.Candlestick charting ex-plained:timeless techniques for trading stocks and futures 3rd Ed [M].New York:McGraw-Hill,2006.
[16] Yahoo!.Finance stock API[EB/OL].[2017-06-28].http://blog.sina.com.cn/s/blog12b66a6db0102w934.html.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 雷丽晖,王静. 可能性测度下的LTL模型检测并行化研究[J]. 计算机科学, 2018, 45(4): 71 -75 .
[2] 孙启,金燕,何琨,徐凌轩. 用于求解混合车辆路径问题的混合进化算法[J]. 计算机科学, 2018, 45(4): 76 -82 .
[3] 张佳男,肖鸣宇. 带权混合支配问题的近似算法研究[J]. 计算机科学, 2018, 45(4): 83 -88 .
[4] 伍建辉,黄中祥,李武,吴健辉,彭鑫,张生. 城市道路建设时序决策的鲁棒优化[J]. 计算机科学, 2018, 45(4): 89 -93 .
[5] 史雯隽,武继刚,罗裕春. 针对移动云计算任务迁移的快速高效调度算法[J]. 计算机科学, 2018, 45(4): 94 -99 .
[6] 周燕萍,业巧林. 基于L1-范数距离的最小二乘对支持向量机[J]. 计算机科学, 2018, 45(4): 100 -105 .
[7] 刘博艺,唐湘滟,程杰仁. 基于多生长时期模板匹配的玉米螟识别方法[J]. 计算机科学, 2018, 45(4): 106 -111 .
[8] 耿海军,施新刚,王之梁,尹霞,尹少平. 基于有向无环图的互联网域内节能路由算法[J]. 计算机科学, 2018, 45(4): 112 -116 .
[9] 崔琼,李建华,王宏,南明莉. 基于节点修复的网络化指挥信息系统弹性分析模型[J]. 计算机科学, 2018, 45(4): 117 -121 .
[10] 王振朝,侯欢欢,连蕊. 抑制CMT中乱序程度的路径优化方案[J]. 计算机科学, 2018, 45(4): 122 -125 .