计算机科学 ›› 2018, Vol. 45 ›› Issue (3): 204-212.doi: 10.11896/j.issn.1002-137X.2018.03.032

• 人工智能 • 上一篇    下一篇

面向全局社交服务网的Web服务聚类方法

陆佳炜,马俊,张元鸣,肖刚   

  1. 浙江工业大学计算机科学与技术学院 杭州310023,浙江工业大学计算机科学与技术学院 杭州310023,浙江工业大学计算机科学与技术学院 杭州310023,浙江工业大学计算机科学与技术学院 杭州310023
  • 出版日期:2018-03-15 发布日期:2018-11-13
  • 基金资助:
    本文受浙江省科技厅公益性技术应用研究项目(2014C33071,2014C31078),浙江省重大科技专项(2014C01048)资助

Service Clustering Approach for Global Social Service Network

LU Jia-wei, MA Jun, ZHANG Yuan-ming and XIAO Gang   

  • Online:2018-03-15 Published:2018-11-13

摘要: 现有的服务聚类方法主要关注服务功能属性或QoS属性,而没有考虑服务在网络中的社交属性,随着服务数量的急速增长,其面临着服务发现效率低等问题。为此,提出一种面向全局社交服务网(GSSN)的Web服务聚类方法。该方法 将孤立的服务联结为一种全局社交服务网络,以挖掘服务间的社交相似度。首先,综合REST与SOAP服务,从服务描述信息、领域标签、QoS信息等层面对服务进行相似度计算。其次,结合服务在网络中的社交属性,利用GSSN算法对相似度计算结果进行聚类处理,以提高服务的发现效率。最后,对全局社交服务网进行可视化实现,以展现各服务在全局环境下的服务社交关系,并设计实验用于对提出的方法进行验证。

关键词: 服务聚类,全局社交服务网,服务发现,服务可视化

Abstract: The existing service clustering approaches mainly focus on functionality or QoS attribute,and they are lack of considering the social attribute in services.The growing number of Web services brings about a series problems of reducing efficiency of service discovery.Thus,this paper proposed a new service clustering approach for global social ser-vice network which can connect the isolated service into a social network.First,the similarity of services is calculated according to descriptive information,tag of domain area and QoS attribute in REST and SOAP service.Second,similarity calculations are clustered by combining with social attribute to enhance the services’ sociability on a global scale.At last,service visualization of global social service network is given to show the social relationships among realted servi-ces.The experimental result shows the effectiveness of the proposed method.

Key words: Service clustering,Global social service network,Service discovery,Service visualization

[1] AL-MASRI E,MAHMOUD Q H.Investigating Web Serviceson the World Wide Web[C]∥International Conference on World Wide Web(WWW 2008).Beijing,China,2008:795-804.
[2] CHEN W,PAIK I,HUNG P C K.Constructing a Global Social Service Network for Better Quality of Web Service Discovery[J].IEEE Transactions on Services Computing,2015,8(2):284-298.
[3] LI Z,WANG J,ZHANG N,et al.A Topic-Oriented Clustering Approach for Domain Services[J].Journal of Computer Research and Development,2014,1(2):408-419.(in Chinese) 李征,王健,张能,等.一种面向主题的领域服务聚类方法[J].计算机研究与发展,2014,51(2):408-419.
[4] TIAN G,HE K Q,WANG J,et al.Domain-Oriented and Tag-Aided Web Service Clustering Method[J].Acta Electronica Sinica,2015,3(7):1266-1274.(in Chinese) 田刚,何克清,王健,等.面向领域标签辅助的服务聚类方法[J].电子学报,2015,43(7):1266-1274.
[5] LIU W,WONG W.Web service clustering using text miningtechniques[J].International Journal of Agent-Oriented Software Engineering,2009,3(1):6-26.
[6] CHERIFI C,LABATUT V.Web Services Dependency Net-works Analysis[C]∥International Conference on New Media and Interactivity.2010:115-120.
[7] GUO F,WEI G,DENG M M,et al.Service Oriented Petri Net Model and It’s Structural Operational Semantics[J].Journal of Chinese Computer Systems,2013,4(12):2739-2743.(in Chinese) 郭峰,魏光,邓蒙蒙.一种面向服务Petri网模型及其结构化操作语义[J].小型微型计算机系统,2013,34(12):2739-2743.
[8] WANG X,WANG Z,XU X.Semi-empirical Service Composition:A Clustering Based Approach[C]∥IEEE International Conference on Web Services(ICWS 2011).Washington DC,USA,DBLP,2011:219-226.
[9] CHEN L,WANG Y,YU Q,et al.WT-LDA:User TaggingAugmented LDA for Web Service Clustering[M]∥ Service-Orien-ted Computing.2013:162-176.
[10] KUMARA B T,PAIK I,KOSWATTE K R.Ontology learning with complex data type for Web service clustering[C]∥IEEE Symposium on Computational Intelligence and Data Mining (CIDM).IEEE,2014:129-136.
[11] NAYAK R,LEE B.Web Service Discovery with additional Semantics and Clustering[C]∥IEEE/WIC/ACM International Conference on Web Intelligence.IEEE,2007:555-558.
[12] WU J,CHEN L,ZHENG Z,et al.Clustering Web services to facilitate service discovery[J].Knowledge & Information Systems,2014,38(1):207-229.
[13] XIE L L,CHEN F Z,KOU J S.Ontology-based semantic web services clustering[C]∥2011 IEEE 18Th International Confe-rence on Industrial Engineering and Engineering Management (IE&EM).IEEE,2011:2075-2079.
[14] KUMARA B T G S,YAGUCHI Y,PAIK I,et al.Clustering and Spherical Visualization of Web Services[C]∥IEEE International Conference on Services Computing.IEEE Computer Socie-ty,2013:89-96.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 雷丽晖,王静. 可能性测度下的LTL模型检测并行化研究[J]. 计算机科学, 2018, 45(4): 71 -75, 88 .
[2] 夏庆勋,庄毅. 一种基于局部性原理的远程验证机制[J]. 计算机科学, 2018, 45(4): 148 -151, 162 .
[3] 厉柏伸,李领治,孙涌,朱艳琴. 基于伪梯度提升决策树的内网防御算法[J]. 计算机科学, 2018, 45(4): 157 -162 .
[4] 王欢,张云峰,张艳. 一种基于CFDs规则的修复序列快速判定方法[J]. 计算机科学, 2018, 45(3): 311 -316 .
[5] 孙启,金燕,何琨,徐凌轩. 用于求解混合车辆路径问题的混合进化算法[J]. 计算机科学, 2018, 45(4): 76 -82 .
[6] 张佳男,肖鸣宇. 带权混合支配问题的近似算法研究[J]. 计算机科学, 2018, 45(4): 83 -88 .
[7] 伍建辉,黄中祥,李武,吴健辉,彭鑫,张生. 城市道路建设时序决策的鲁棒优化[J]. 计算机科学, 2018, 45(4): 89 -93 .
[8] 刘琴. 计算机取证过程中基于约束的数据质量问题研究[J]. 计算机科学, 2018, 45(4): 169 -172 .
[9] 钟菲,杨斌. 基于主成分分析网络的车牌检测方法[J]. 计算机科学, 2018, 45(3): 268 -273 .
[10] 史雯隽,武继刚,罗裕春. 针对移动云计算任务迁移的快速高效调度算法[J]. 计算机科学, 2018, 45(4): 94 -99, 116 .