计算机科学 ›› 2018, Vol. 45 ›› Issue (4): 233-239, 256.doi: 10.11896/j.issn.1002-137X.2018.04.039

• 人工智能 • 上一篇    下一篇

基于改进的离散PSO算法的FJSP的研究

丁舒阳,黎冰,侍洪波   

  1. 华东理工大学信息科学与工程学院 上海200237,华东理工大学信息科学与工程学院 上海200237,华东理工大学信息科学与工程学院 上海200237
  • 出版日期:2018-04-15 发布日期:2018-05-11

Study on Flexible Job-shop Scheduling Problem Based on Improved Discrete Particle Swarm Optimization Algorithm

DING Shu-yang, LI Bing and SHI Hong-bo   

  • Online:2018-04-15 Published:2018-05-11

摘要: 柔性作业车间调度问题(Flexible Job-shop Scheduling Problem,FJSP)是经典作业车间调度问题的一个扩展,前者更接近于实际生产。以最小化最大完工时间为目标,提出了一种改进的离散粒子群优化算法。传统粒子群优化算法一般适用于优化连续模型问题,FJSP作为复杂度比较高的组合优化问题,是一种典型的离散模型。提出的算法采用机器负荷平衡机制初始化粒子种群,在粒子的更新过程中引入了3个操作算子来更新粒子的工序排序部分和机器分配部分,这3个算子分别为基于工序排序或机器分配的变异、与个体最优位置之间进行工序先后顺序保留的交叉(POX)操作、与全局最优位置进行随机点保存的交叉(RPX)操作。先后执行以上3个算子以完成粒子的一次更新。这种操作能够使种群较快地收敛于最优解。对标准测试案例进行实验的结果表明,所提算法对解决FJSP具有有效性,并且能够快速地搜索到近似最优解;与其他同类算法相比,所提算法在求解效果和收敛速度上均具有优越性。

关键词: 作业车间调度,离散优化问题,柔性,粒子群优化

Abstract: Flexible job-shop scheduling problem is an extension of the classical job-shop scheduling problem.The former is much closer to the practical production. Aiming at minimizing the maximum completion time,this paper proposed an improved discrete particle swarm optimization algorithm.The traditional particle swarm optimization algorithm is applicable to optimize the continuous models.As a combinatorial optimization problem with high complexity,FJSP is a typically discrete model.The proposed algorithm utilizes the load balancing mechanism for the machines to initiate the population,and introduces three operators into the procedure of updating the individuals’ status in the population.The three operators are respectively described as follows:the mutation based on the operation sequencing or the machine assignment,the precedence preserving order based crossover between current particle and the individual optimal,and rand-point preservation crossover between current particle and the global optimal.A particle is completely updated by using three operators sucessively.This method makes the population converge to the optimal solution very fast.The experimental results of benchmark instances show that the proposed algorithm can practically solve the flexible job-shop scheduling problem and search the near optimal solutions very fast.The proposed algorithm outperforms the other similar algorithms with respect to searching efficiency and convergence speed.

Key words: Job-shop scheduling,Discrete optimization problem,Flexibility,Particle swarm optimization

[1] BRANDIMARTE P.Routing and Scheduling in a Flexible JobShop by Tabu Search [J].Annals of Operations Research,1993,41(3):157-183.
[2] KACEM I,HAMMADI S,BORNE P.Approach by Localization and Multi-Objective Evolutionary Optimization for Flexible Job-Shop Scheduling Problems [J].IEEE Transactions on Systems,Man and Cybernetics,Part C(Applications and Reviews),2002,32(1):1-3.
[3] PEZZELLA F,MORGANTI G,CIASCHETTI G.A GeneticAlgorithm for the Flexible Job-Shop Scheduling Problem[J].Computers & Operations Research,2008,35(10):3202-3212.
[4] XING L N,CHEN Y W,WANG P,et al.A Knowledge-Based Ant Colony Optimization for Flexible Job Shop Scheduling Problems [J].Applied Soft Computing,2010,10(3):888-896.
[5] ZHANG G,GAO L,SHI Y,et al.An Effective Genetic Algorithm for the Flexible Job-Shop Scheduling Problem [J].Expert Systems with Application,2011,38(4):3563-3573.
[6] AL-HINAI N,ELMEKKAWY T Y.Robust and Stable Flexible Job Shop Scheduling with Random Machine Breakdowns Using a Hybrid Genetic Algorithm [J].International Journal of Production Economics,2011,132(2):279-291.
[7] WANG J,CHU K.An Application of Genetic Algorithms for the Flexible Job-Shop Scheduling Problem [J].International Journal of Advancements in Computing Technology,2012,4(3):271-278.
[8] YAZDANI M,AMIRI M,ZANDIEH M.Flexible Job-ShopScheduling with Parallel Variable Neighborhood Search Algorithm [J].Expert Systems with Application,2010,37(1):678-687.
[9] DEFERSHA F M,MINGYUAN C.A Parallel Genetic Algo-rithm for a Flexible Job-Shop Scheduling Problem with Sequence Dependent Setups [J].International Journal of Advanced Manufacturing Technology,2010,49(1/4):263-279.
[10] KENNEDY J,EBERHART R C.A Discrete Binary Version of the Particle Swarm Algorithm [C]∥IEEE International Confe-rence on Systems.2002:4104-4108.
[11] CEHN J,PAN Q K.A Discrete Particle Swarm Optimization Algorithm for Independent Task Scheduling Problem [J].Computer Engineering,2008,4(6):214-215,8.(in Chinese) 陈晶,潘全科.求解独立任务调度的离散粒子群优化算法[J].计算机工程,2008,4(6):214-215,8.
[12] COELLO C A C,PULIDO G T,LECHUGA M S.Handlingmultiple objectives with particle swarm optimization[J].IEEE Transactions on Evolutionary Computation,2004,8(3):256-279.
[13] MONTGOMERY D C.Design and Analysis of Experiments[M].New York:John Wiley & Sons,2008.
[14] TANG X X,HE W P,HE Y L,et al.Research and Implementation of Job Shop Scheduling System [J].Aeronautical Manufacturing Technology,2011(5):69-73.(in Chinese) 唐欣欣,何卫平,和延立,等.面向作业车间的调度系统研究与实现[J].航空制造技术,2011(5):69-73.
[15] ZIAEE M.A Heuristic Algorithm for Solving Flexible Job Shop Scheduling Problem [J].The International Journal of Advanced Manufacturing Technology,2014,1(1-4):519-528.
[16] WOJCIECH B,MARIUSZ U,MIECZYSLAW W.Parallel Hybrid Metaheuristics for the Flexible Job Shop Problem [J].Computers & Industrial Engineering,2010,9(2):323-333.
[17] ZHANG T N,HAN B,YU B,et al.Flexible Job Shop Scheduling Optimization with Production Capacity Constraints [J].System Engineering-Theory & Practice,2011,1(3):505-511.(in Chinese) 张铁男,韩兵,于渤,等.生产能力约束条件下的柔性作业车间调度优化[J].系统工程理论与实践,2011,1(3):505-511.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 编辑部. 新网站开通,欢迎大家订阅![J]. 计算机科学, 2018, 1(1): 1 .
[2] 雷丽晖,王静. 可能性测度下的LTL模型检测并行化研究[J]. 计算机科学, 2018, 45(4): 71 -75, 88 .
[3] 夏庆勋,庄毅. 一种基于局部性原理的远程验证机制[J]. 计算机科学, 2018, 45(4): 148 -151, 162 .
[4] 厉柏伸,李领治,孙涌,朱艳琴. 基于伪梯度提升决策树的内网防御算法[J]. 计算机科学, 2018, 45(4): 157 -162 .
[5] 王欢,张云峰,张艳. 一种基于CFDs规则的修复序列快速判定方法[J]. 计算机科学, 2018, 45(3): 311 -316 .
[6] 孙启,金燕,何琨,徐凌轩. 用于求解混合车辆路径问题的混合进化算法[J]. 计算机科学, 2018, 45(4): 76 -82 .
[7] 张佳男,肖鸣宇. 带权混合支配问题的近似算法研究[J]. 计算机科学, 2018, 45(4): 83 -88 .
[8] 伍建辉,黄中祥,李武,吴健辉,彭鑫,张生. 城市道路建设时序决策的鲁棒优化[J]. 计算机科学, 2018, 45(4): 89 -93 .
[9] 刘琴. 计算机取证过程中基于约束的数据质量问题研究[J]. 计算机科学, 2018, 45(4): 169 -172 .
[10] 钟菲,杨斌. 基于主成分分析网络的车牌检测方法[J]. 计算机科学, 2018, 45(3): 268 -273 .