计算机科学 ›› 2018, Vol. 45 ›› Issue (6): 76-83.doi: 10.11896/j.issn.1002-137X.2018.06.013

• 网络与通信 • 上一篇    下一篇

面向O2O服务的移动社交网络个性化可信群体识别模型

朱文强   

  1. 江西财经大学软件与通信工程学院 南昌330013
  • 收稿日期:2017-05-06 出版日期:2018-06-15 发布日期:2018-07-24
  • 作者简介:朱文强(1977-),男,博士,讲师,CCF会员,主要研究方向为信任管理、服务计算、推荐系统、电子商务,E-mail:stbrook@aliyun.com(通信作者)
  • 基金资助:
    本文受国家自然科学基金项目(71662014,61602219,61462030)资助

Personalized Trustworthy Group Identifying Model Based on O2O Service-oriented Mobile Social Network

ZHU Wen-qiang   

  1. School of Software and Communication Engineering,Jiangxi University of Finance and Economics,Nanchang 330013,China
  • Received:2017-05-06 Online:2018-06-15 Published:2018-07-24

摘要: 移动通信技术的飞速发展和广泛应用,促进了移动社交网络和O2O服务的高度融合。在订购O2O服务时,人们已习惯先通过移动社交网络咨询O2O服务信息;待服务完成后,再通过移动社交网络发表对O2O服务的体验感受。由于移动社交网络具有开放性和匿名性,用户需要有效识别出可信的用户群体,以对这些服务体验和反馈信息的可靠性进行核实。目前,可信群体识别方面的研究主要集中在云计算和在线社交网络领域,且大多采用全局信任的计算方式,未考虑用户的个性化信任因素,无法适用于面向O2O服务的个性化移动社交网络。针对这一问题,对Advogato信任模型进行扩展,考虑用户的互动程度、社交圈子相似性及兴趣相似性,采用信任容量优先最大流搜索方法建立用户的个性化信任网络,并将识别出的可信用户群体排序输出。基于真实数据集的实验结果表明,该模型在可信群体预测的准确度、漏检率及Top排序范围方面比现有方法的效果更优。

关键词: O2O服务, 信任网络, 信任模型, 可信群体识别

Abstract: With the quick development of mobile communication technique at present,the mobile social network is combining with O2O services more tightly than ever.Users are used to consulting their mobile social networks about those O2O services which they want to order,and submitting their feedbacks and ratings about these services to their mobile social networks after enjoyed these services.However,the mobile social networks are openness,and users can submit their feedbacks anonymously,so it is critical for users to identify the trustworthy group to check if these feedbacks are reliable.The present researches on trustworthy user group identifying are mainly focused on cloud computing and online social networks.Most of these researches use global methods to compute the trust value of users,and neglect factors such as social circles,service preferences,personal interests,and so on,so these existing researches are unfit for the O2O service-oriented personal social networks.To identify the trustworthy group in personal mobile social networks effectively,this paper proposed a trust model based on the famous Advogato model.It takes the interaction frequency,similarity of users’ social circles,similarity of users’ interests into consideration,uses the capacity-first maximum flow search method to transfer the trust flow between users to build their personal trust networks,and finally outputs the ranked trustworthy user group.The experimental results on real dataset show that the proposed trust model has superiorperformance of the prediction accuracy(Pre),missing rate(MsR) and top ranking range(Trr) while comparing to the existing group trust models.

Key words: O2O services, Trust network, Trust model, Trustworthy group identifying

中图分类号: 

  • TP393
[1]腾讯公司.移动QQ及微信用户人数统计[EB/OL].(2016-10).http://pc.qq.com/mobile.html.
[2]CNNIC.2016年第38次中国互联网络发展状况统计报告[R].北京:2016.
[3]YORK S N.Mobile Social Network[M]//Encyclopedia of Social Network Analysis and Mining.New York:Springer,2014.
[4]CCTV.2016年315晚会[EB/OL].http://315.cntv.cn/special/2016/index.shtml.
[5]LEVIEN R.Attack-Resistant Trust Metrics[M]//Computing with Social Trust.2009:121-132.
[6]AL-OUFI S,KIM H N,SADDIK A E.A group trust metric for identifying people of trust in online social networks[J].Expert Systems with Applications,2012,39(18):13173-13181.
[7]ABDELGHANI W,ZAYANI C A,AMOUS I,et al.Trust Management in Social Internet of Things:A Survey[C]//IFIP Conference on e-Business,e-Services,and e-Society.2016:187-199.
[8]LI P C,ZHONG Y S.A study of offline merchants’ acceptance of mobile O2O commerce[J].Contemporary Finance & Economi-cs,2014(9):75-87.(in Chinese)
李普聪,钟元生.移动O2O商务线下商家采纳行为研究[J].当代财经,2014(9):75-87.
[9]Advogato.Introduction about advogato trust metric[EB/OL].http://www.advogato.org/trust-metric.html.
[10]XIAO S,DONG M.Hidden semi-Markov model-based reputation management system for online to offline (O2O) e-commerce markets[J].Decision Support Systems,2015,77(C):87-99.
[11]ZOLFAGHAR K,AGHAIE A.A syntactical approach for interpersonal trust prediction in social web applications:Combining contextual and structural data[J].Knowledge-Based Systems,2012,26:93-102.
[12]WANG Y,WANG X,ZUO W L.Trust Prediction Modeling Based on Social Theories[J].Journal of Software,2014,25(12):2893-2904.(in Chinese)
王英,王鑫,左万利.基于社会学理论的信任关系预测模型[J].软件学报,2014,25(12):2893-2904.
[13]ZHANG W Y,WU B,GENG Y S,et al.Joint Rating and Trust Collective Matrix Prediction Based on Factorization[J].Acta Electronica Sinica,2016,44(7):1581-1586.(in Chinese)
张维玉,吴斌,耿玉水,等.基于协同矩阵分解的评分与信任联合预测[J].电子学报,2016,44(7):1581-1586.
[14]GAN Z B,ZENG C,MA Y,et al.C2C E-Commerce trust Algorithm Based on trust Network[J].Journal of Software,2015,26(8):1946-1959.(in Chinese)
甘早斌,曾灿,马尧,等.基于信任网络的C2C电子商务信任算法[J].软件学报,2015,26(8):1946-1959.
[15]JIANG L,XU J,ZHANG K,et al.A new evidential trust model for open distributed systems[J].Expert Systems with Applications,2012,39(3):3772-3782.
[16]LAX G,SARNÉ G M L.CellTrust:a reputation model for C2C commerce[J].Electronic Commerce Research,2008,8(4):193-216.
[17]GAN Z B,ZENG C,LI K,et al.Construction and Optimization of Trust Network in E-Commerce Environment[J].The Chinese Journal of Computers,2012,35(1):27-37.(in Chinese)
甘早斌,曾灿,李开,等.电子商务下的信任网络构造与优化[J].计算机学报,2012,35(1):27-37.
[18]JØSANG A,BHUIYAN T.Optimal Trust Network Analysis with Subjective Logic[C]//International Conference on Emerging Security Information.IEEE,2008:179-184.
[19]LI D Q,WU X C,GUO R M.Electronic Commerce Transaction Trust Model Based on Two Layers Nodes and Objective Risk[J].Computer Science,2016,43(5):117-121.(in Chinese)
李道全,吴兴成,郭瑞敏.一种基于二层节点和客观风险的电子商务交易信任模型[J].计算机科学,2016,43(5):117-121.
[20]HUR J,GUO M,PARK Y,et al.Reputation-Based Collusion Detection with Majority of Colluders[J].Ieice Transactions on Information & Systems,2016,E99.D(7):1822-1835.
[21]FORD L R,FULKERSON D R.Maximal Flow Through a Network[M]//Classic Papers in Combinatorics.Boston:Birkhau-ser,2009:243-248.
[22]MARK G.The Strength of Weak Ties:A network theory revisited[J].Sociological Theory,1983,1(6):201-233.
[23]HOFFMAN K,ZAGE D,NITA-ROTARU C.A survey of attack and defense techniques for reputation systems[J].Acm Computing Surveys,2009,42(1):5515-5528.
[24]GILBERT E,KARAHALIOS K.Predicting tie strength with social media[C]//International Conference on Human Factors in Computing Systems(CHI 2009).Boston,MA,USA,2009:211-220.
[25]CANTADOR I,BRUSILOVSKY P,KUFLIK T.Second workshop on information heterogeneity and fusion in recommender systems [C]//Proceedings of the 2nd International Workshop on Information Heterogeneity and Fusion in Recommender Systems(HetRec2011).2011:387-388.
[26]KLEINBERG J.The Small-World Phenomenon:An Algorithmic Perspective[C]//ACM Symposium on Theory of Computing.2000:163-170.
[1] 张洪波, 王佳蕾, 张丽娟, 刘志宏. 基于信任网络的协同过滤推荐方法[J]. 计算机科学, 2018, 45(8): 146-150.
[2] 王佳蕾, 郭耀, 刘志宏. 基于社交网络信任关系的服务推荐方法[J]. 计算机科学, 2018, 45(11A): 402-408.
[3] 刘建生, 游真旭, 乐光学, 王结太, 刘建华. 网络信任研究进展[J]. 计算机科学, 2018, 45(11): 13-28,36.
[4] 廖新考,王力生,刘晓建,许晓洁. 网络环境下的个性化信任模型PTM[J]. 计算机科学, 2017, 44(8): 100-106.
[5] 何明,刘伟世,魏铮. 基于信任网络随机游走模型的协同过滤推荐[J]. 计算机科学, 2016, 43(6): 257-262.
[6] 游静,冯辉,孙玉强. 云环境下基于协同推荐的信任评估与服务选择[J]. 计算机科学, 2016, 43(5): 140-145.
[7] 李道全,吴兴成,郭瑞敏. 一种基于二层节点和客观风险的电子商务交易信任模型[J]. 计算机科学, 2016, 43(5): 117-121.
[8] 彭浩,赵丹丹,于运杰,吴震东,吴松洋. 一种面向分布式异构网络的基于可信计算的信任模型[J]. 计算机科学, 2016, 43(10): 66-69.
[9] 杨章伟,王立平,赖文萍. 改进的计算网格域内实体信任模型设计[J]. 计算机科学, 2015, 42(Z11): 386-389.
[10] 吴春琼,黄榕宁. 基于动态线性相关的访问控制模型研究[J]. 计算机科学, 2015, 42(9): 94-96, 106.
[11] 邬海琴,王良民. 基于信任距离的车联网恶意节点检测方法[J]. 计算机科学, 2015, 42(8): 157-160, 174.
[12] 曹晓梅,胡文捷. 基于动态角色属性的MP2P信任模型[J]. 计算机科学, 2015, 42(8): 106-111.
[13] 徐培,廉 彬,邵 堃,陈 俊,安 宁. 面向决策的信任融合模型研究[J]. 计算机科学, 2015, 42(12): 157-161.
[14] 陈卫东,李敏强,赵庆展. 基于P2P环境下的Web服务选择信任模型研究[J]. 计算机科学, 2015, 42(1): 113-118.
[15] 张绍武,林鸿飞,刘晓霞,窦彦昭. 基于概率的信任传播模型[J]. 计算机科学, 2014, 41(8): 90-93,114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 编辑部. 新网站开通,欢迎大家订阅![J]. 计算机科学, 2018, 1(1): 1 .
[2] 雷丽晖,王静. 可能性测度下的LTL模型检测并行化研究[J]. 计算机科学, 2018, 45(4): 71 -75, 88 .
[3] 夏庆勋,庄毅. 一种基于局部性原理的远程验证机制[J]. 计算机科学, 2018, 45(4): 148 -151, 162 .
[4] 厉柏伸,李领治,孙涌,朱艳琴. 基于伪梯度提升决策树的内网防御算法[J]. 计算机科学, 2018, 45(4): 157 -162 .
[5] 王欢,张云峰,张艳. 一种基于CFDs规则的修复序列快速判定方法[J]. 计算机科学, 2018, 45(3): 311 -316 .
[6] 孙启,金燕,何琨,徐凌轩. 用于求解混合车辆路径问题的混合进化算法[J]. 计算机科学, 2018, 45(4): 76 -82 .
[7] 张佳男,肖鸣宇. 带权混合支配问题的近似算法研究[J]. 计算机科学, 2018, 45(4): 83 -88 .
[8] 伍建辉,黄中祥,李武,吴健辉,彭鑫,张生. 城市道路建设时序决策的鲁棒优化[J]. 计算机科学, 2018, 45(4): 89 -93 .
[9] 刘琴. 计算机取证过程中基于约束的数据质量问题研究[J]. 计算机科学, 2018, 45(4): 169 -172 .
[10] 钟菲,杨斌. 基于主成分分析网络的车牌检测方法[J]. 计算机科学, 2018, 45(3): 268 -273 .