计算机科学 ›› 2019, Vol. 46 ›› Issue (4): 36-43.doi: 10.11896/j.issn.1002-137X.2019.04.006
李红梅1, 刁兴春1, 曹建军2, 冯钦1, 张磊1
LI Hong-mei1, DIAO Xing-chun1, CAO Jian-jun2, FENG Qin1, ZHANG Lei1
摘要: 为进一步提高面向隐式反馈的标签感知推荐性能,针对隐式反馈数据的稀疏性问题以及标签数据的冗余、语义模糊等问题,提出了一种基于用户细粒度偏好和增量加权矩阵分解的个性化推荐方法。为缓解隐式反馈数据稀疏不平衡的影响,提出使用协同近邻用户关系从大规模未观测数据中挖掘目标用户可能感兴趣的潜在项目,即近邻用户感兴趣但目标用户未选择的项目,进而提出了用户对项目的细粒度偏好假设:观测项目>潜在项目>其他未观测项目,改进传统成对偏好假设的粗糙性。为获取更为可靠的近邻用户,利用基于深度学习的方法来抽取用户-标签的低维、抽象的深层语义特征,缓解了原始标签数据的冗余、语义模糊等对用户表征的影响。最后,基于用户的细粒度偏好提出一种增量加权矩阵分解模型,并进行快速优化求解与推荐。实验结果表明:提出的算法在多个排序推荐准确性的评价指标(Pre@5,NDCG@5,MRR)上分别提升了约9%,8%,9%,验证了所提算法的有效性。
中图分类号:
[1]HU Y,KOREN Y,VOLINSKY C.Collaborative filtering for implicit feedback datasets[C]∥ Proceedings of the 8th International Conference on Data Mining.2008. [2]PAN R,ZHOU Y,CAO B,et al.One-Class Collaborative Filte- ring[C]∥International Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases.2008. [3]HE X,ZHANG H,KAN M Y,et al.Fast Matrix Factorization for Online Recommendation with Implicit Feedback[C]∥ Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval.2016:549-558. [4]PAN W,ZHONG H,XU C,et al.Adaptive Bayesian persona- lized ranking for heterogeneous implicit feedbacks[J].Know-ledge-Based Systems,2015,73(1):173-180. [5]SHEPITSEN A,GEMMELL J,MOBASHER B,et al.Persona- lized recommendation in social tagging systems using hierarchical clustering[C]∥Proceeding of the 2008 ACM Conference on Recommendater Systems.2008:259-266. [6]ZUO Y,ZENG J,GONG M,et al.Tag-aware recommender systems based on deep neural networks[J].Neurocomputing,2016,204:51-60. [7]ZHANG Z K,ZHOU T,ZHANG Y C.Personalized recommendation via integrated diffusion on user-item-tag tripartite graphs[J].Physica A:Statistical Mechanics and its Applications,2010,389(1):179-186. [8]ZHANG Z,ZENG D D,ABBASI A,et al.A Random Walk Model for Item Recommendation in Social Tagging Systems[J].Acm Transactions on Management Information Systems,2013,4(2):1-24. [9]HE M,YANG F,YAO K S,et al.TEFRCF:Collaborative filtering personalized recommendation algorithm based on tag entropy feature representation[J].Computer Science,2018,45(6):465-486.(in Chinese) 何明,杨芃,要凯升,等.TEFRCF:标签熵特征表示的协同过滤个性化推荐算法[J].计算机科学,2018,45(6):465-486. [10]ZENG D,LI H.How Useful Are Tags? — An Empirical Analysis of Collaborative Tagging for Web Page Recommendation[C]∥IEEE Isi 2008 Paisi,Paccf,and Soco International Workshops on Intelligence and Security Informatics.2008:320-330. [11]HE M,YAO K S,YANG F,et al.Collaborative filtering perso- nalized recommendation based on similarity of tag information feature[J].Computer Science,2018,45(6):415-422.(in Chinese) 何明,要凯升,杨芃,等.基于标签信息特征相似性的协同过滤个性化推荐[J].计算机科学,2018,45(6):415-422. [12]WU L,CHEN E,LIU Q,et al.Leveraging tagging for neighborhood-aware probabilistic matrix factorization[C]∥ Proceedings of the 21st ACM International Conference on Information and Knowledge Management.2012:1854-1858. [13]MA H,ZHOU T C,LYU M R,et al.Improving Recommender Systems by Incorporating Social Contextual Information[J].ACM Transactions on Information Systems,2011,29(2):1-23. [14]ZHANG Z,ZENG D D,ABBASI A,et al.A random walk model for item recommendation in social tagging systems[J].ACM Transactions on Management Information Systems,2013,4(2):1-24. [15]LI H Y,FU Y Q.Collaborative filtering recommendation algorithm based on tag clustering and item topic[J].ComputerScie-nce,2018,45(4):247-251.(in Chinese) 李昊阳,符云清.基于标签权重评分的推荐模型及算法研究[J].计算机科学,2018,45(4):247-251. [16]ELKAHKY A M,SONG Y,HE X.A multi-view deep learning approach for cross domain user modeling in recommendation systems[C]∥WWW’15.2015:278-288. [17]HUANG P S,HE X,GAO J,et al.Learning deep structured semantic models for web search using clickthrough data[C]∥ ACM International Conference on Conference on Information & Knowledge Management.2013:2333-2338. [18]HUANG L W,JIANG B T,LV S Y,et al.Survey on deep lear- ning based recommender systems[J].Chinese Journal of Compu-ters,2018,427(7):191-219.(in Chinese) 黄立威,江碧涛,吕守业,等.基于深度学习的推荐系统研究综述[J].计算机学报,2018,427(7):191-219. [19]LE Q V,NGIAM J,COATES A,et al.On optimization methods for deep learning[C]∥ International Conference on Machine Learning(ICML 2011).Bellevue,Washington,USA,2011:265-272. [20]HINTON G E.A Practical Guide to Training Restricted Boltz- mann Machines[J].Momentum,2012,9(1):599-619. [21]SEDHAIN S,MENON A K,SANNER S,et al.On the effectiveness of linear models for one-class collaborative filtering[C]∥ Proceedings of the 30th Conference on Artificial Intelligence.2016. [22]LI H,GE Y,HONG R,et al.Point-of-Interest Recommenda- tions:Learning Potential Checkins from Friends[C]∥Procee-dings of the 22nd International ACM SIGKDD Conference on Knowledge Discovery and Data Mining.2016. [23]DEVOOGHT R,KOURTELLIS N,MANTRACH A.Dynamic matrix factorization with priors on unknown values[C]∥ Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.ACM,2015:189-198. [24]DEVOOGHT R,KOURTELLIS N,MANTRACH A.Dynamic Matrix Factorization with Priors on Unknown Values[C]∥ Proceedings of the 21st International ACM SIGKDD Conference on Knowledge Discovery and Data Mining Sydney.NSW,Australia,2015. [25]RENDLE S,FREUDENTHALER C,GANTNER Z,et al.BPR:Bayesian Personalized Ranking from Implicit Feedback[C]∥ Proceedings of the 25th Conferenceon Uncertainty in Artificial Intelligence.2009:452-461. |
[1] | 周燕, 曾凡智, 吴臣, 罗粤, 刘紫琴. 基于深度学习的三维形状特征提取方法[J]. 计算机科学, 2019, 46(9): 47-58. |
[2] | 马露, 裴伟, 朱永英, 王春立, 王鹏乾. 基于深度学习的跌倒行为识别[J]. 计算机科学, 2019, 46(9): 106-112. |
[3] | 李青华, 李翠平, 张静, 陈红, 王绍卿. 深度神经网络压缩综述[J]. 计算机科学, 2019, 46(9): 1-14. |
[4] | 王嫣然, 陈清亮, 吴俊君. 面向复杂环境的图像语义分割方法综述[J]. 计算机科学, 2019, 46(9): 36-46. |
[5] | 孙中锋, 王静. 用于基于方面情感分析的RCNN-BGRU-HN网络模型[J]. 计算机科学, 2019, 46(9): 223-228. |
[6] | 缪永伟, 李高怡, 鲍陈, 张旭东, 彭思龙. 基于卷积神经网络的图像局部风格迁移[J]. 计算机科学, 2019, 46(9): 259-264. |
[7] | 邓存彬, 虞慧群, 范贵生. 融合动态协同过滤和深度学习的推荐算法[J]. 计算机科学, 2019, 46(8): 28-34. |
[8] | 杜威, 丁世飞. 多智能体强化学习综述[J]. 计算机科学, 2019, 46(8): 1-8. |
[9] | 郭旭, 朱敬华. 基于用户向量化表示和注意力机制的深度神经网络推荐模型[J]. 计算机科学, 2019, 46(8): 111-115. |
[10] | 张义杰, 李培峰, 朱巧明. 基于自注意力机制的事件时序关系分类方法[J]. 计算机科学, 2019, 46(8): 244-248. |
[11] | 李舟军,王昌宝. 基于深度学习的机器阅读理解综述[J]. 计算机科学, 2019, 46(7): 7-12. |
[12] | 张琳娜,陈建强,陈晓玲,岑翼刚,阚世超. 面向行车视频目标实时检测的轻量级SSD网络[J]. 计算机科学, 2019, 46(7): 233-237. |
[13] | 李健, 杨祥如, 何斌. 基于深度学习的几何特征匹配方法[J]. 计算机科学, 2019, 46(7): 274-279. |
[14] | 刘梦娟,曾贵川,岳威,仇笠舟,王加昌. 面向展示广告的点击率预测模型综述[J]. 计算机科学, 2019, 46(7): 38-49. |
[15] | 陈思文, 刘玉江, 刘冬, 苏晨, 赵地, 钱林学, 张佩珩. 基于AlexNet模型和自适应对比度增强的乳腺结节超声图像分类[J]. 计算机科学, 2019, 46(6A): 146-152. |
|