计算机科学 ›› 2019, Vol. 46 ›› Issue (4): 228-234.doi: 10.11896/j.issn.1002-137X.2019.04.036

• 人工智能 • 上一篇    下一篇

基于用户兴趣和地理因素的兴趣点推荐方法

苏畅, 武鹏飞, 谢显中, 李宁   

  1. 重庆邮电大学计算机科学与技术学院 重庆400065
  • 收稿日期:2018-03-10 出版日期:2019-04-15 发布日期:2019-04-23
  • 通讯作者: 谢显中(1966-),男,博士,教授,主要研究方向为移动通信技术、通信信号处理,E-mail:xiexzh@cqupt.edu.cn(通信作者)
  • 作者简介:苏 畅(1979-),女,博士,教授,CCF会员,主要研究方向为基于位置的社交网络分析和空间数据挖掘,E-mail:changsu@cqupt.edu.cn;武鹏飞(1988-),男,硕士生,主要研究方向为基于位置的社交网络兴趣点预测算法;李 宁(1991-),男,硕士生,主要研究方向为基于位置的社交网络的空间聚类和推荐算法。
  • 基金资助:
    本文受国家自然科学基金(61271259),重庆市基础科学与前沿技术研究项目(CSTC2016jcyA0398,CTSC2011jjA40006,CTSC2012jjA40038),重庆教育委员会研究项目(KJ120501C)资助。

Point of Interest Recommendation Based on User’s Interest and Geographic Factors

SU Chang, WU Peng-fei, XIE Xian-zhong, LI Ning   

  1. College of Computer Science and Technology,Chongqing University of Posts and Telecommunications,Chongqing 400065,China
  • Received:2018-03-10 Online:2019-04-15 Published:2019-04-23

摘要: 在基于位置的社交网络中,协同过滤作为目前应用最广泛的推荐技术,存在数据稀疏性和冷启动等问题。针对协同过滤算法的不足,提出了一种结合用户兴趣和地理因素的兴趣点推荐算法。该方法首先通过自适应带宽的核密度分布、朴素贝叶斯算法以及兴趣点的流行度挖掘用户的地理偏好,并根据地理偏好模型筛选出一部分候选推荐兴趣点;然后,为了克服协同过滤算法的数据稀疏性问题和用户冷启动问题,结合用户签到相似性、类别信息和用户信任度构建用户偏好模型进行兴趣点推荐;最后,使用 Yelp数据集进行实验分析,结果表明所提出的基于用户兴趣和地理因素的兴趣点推荐模型取得了良好的推荐效果。

关键词: 兴趣点推荐, 地理偏好, 类别信息, 信任关系, 协同过滤

Abstract: In the location-based social network,collaborative filtering is the most widely used recommended technology,but it has some drawbacks,such as data sparsity and cold start.In light of this,this paper presented a point of interest(POI) recommendation algorithm combining user’s interest and geographic factors.In this method,firstly,the adaptive kernel density distribution,naive Bayesian algorithm and the popularity of POIs are combined to mine user’s geographi-cal preferences,and some candidate recommended POIs are screened out according to the geographical preference model.Then,in order to overcome the problems of data sparsity and cold start in collaborative filtering algorithm,a user pre-ference model is constructed to carry out POI recommendation based on the similarities of user checked-in,category information and user trust.Finally,the Yelp data set was used to conduct the experimental analysis.The results show that the proposed POI recommendation model based on user’s interest and geographical factor obtains good recommendation effect.

Key words: POI recommendation, Geographical preferences, Category information, Trust relationship, Collaborative filtering

中图分类号: 

  • TP311
[1]LI H,GE Y,ZHU H,et al.Point-of-Interest Recommendations:Learning Potential Checkins from Friends[C]∥In Proceedings of the 22nd ACM SIGKDD International Conference on Know-ledge Discovery and Data Mining.San Francisco:ACM Press,2016:975-984.
[2]YU Y,WANG H,SUN S,et al.Exploiting location significance and user authority for point-of-interest recommendation[C]∥Advances in Knowledge Discovery and Data Mining- 21st Paci-fic-Asia Conference.South Korea:PAKDD Press,2017:119-130.
[3]YANG S,HUANG G,XIANG Y,et al.Modeling User Preferences on Spatiotemporal Topics for Point-of-Interest Recommendation[C]∥IEEE International Conference on Services Computing.Honolulu:IEEE Press,2017:204-211.
[4]LIM K H,CHAN J,LECKIE C,et al.Personalized trip recommendation for tourists based on user interests,points of interest visit durations and visit recency[J].Knowledge & Information Systems,2017(2):1-32.
[5]XIE M,WANG S,WANG H,et al.Learning Graph-based POI Embedding for Location based Recommendation[C]∥ACM International on Conference on Information and Knowledge Mana-gement.Indianapolis:ACM,2016:15-24.
[6]FANG M Y,DAI B R.Power of Bosom Friends,POI Recom- mendation by Learning Preference of Close Friends and Similar Users[C]∥Big Data Analytics and Knowledge Discovery.Porto:Springer Press,2016:179-192.
[7]ZHANG J D,CHOW C Y,ZHENG Y.ORec:An Opinion-Based Point-of-Interest Recommendation Framework[C]∥ACM International on Conference on Information and Knowledge Mana-gement.Melbourne:ACM,2015:1641-1650.
[8]YE M,YIN P,LEE W C,et al.Exploiting geographical influence for collaborative point-of-interest recommendation[C]∥Proceeding of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval.Beijing:ACM Press,2011:325-334.
[9]ZHANG J D,CHOW C Y,LI Y.iGeoRec:A Personalized and Efficient Geographical Location Recommendation Framework[J].IEEE Transactions on Services Computing,2015,8(5):701-714.
[10]LI H,HONG R,ZHU S,et al.Point-of-Interest Recommender Systems:A Separate-Space Perspective[C]∥IEEE International Conference on Data Mining.Barcelona:IEEE Press,2016:231-240.
[11]CHENG C,HUANG J,ZHONG N.Point-of-Interest Recommendations by Unifying Multiple Correlations[C]∥Web-Age Information Management.Nanchang:Springer Press,2016:178-190.
[12]LIN K,WANG J,ZHANG Z,et al.Adaptive location recommendation algorithm based on location-based social networks[C]∥International Conference on Computer Science & Education.Cambridge:IEEE Press,2015:137-142.
[13]WANG R Q,PAN J,LI Y X,Research on collaborative recommendation method based on multiple data sources of social network.Telecommunications Science[J].Telecommunications Science,2015,31(6):78-84.(in Chinese) 王瑞琴,潘俊,李一啸.基于多社交数据源的协同推荐方法研究[J].电信科学,2015,31(6):78-84.
[14]HE M,XIAO R,LIU W S,et al.Collaborative Filtering Recommendation Algorithm Combing Category Information and User Interests [J].Telecommunications Science,2017,44(8):230-235.(in Chinese) 何明,肖润,刘伟世,等.融合类别信息和用户兴趣度的协同过滤推荐算法[J].计算机科学,2017,44(8):230-235.
[15]Yelp.Challenge Data Set[OL].(2015-12-24).http://www.yelp.com/dataset_change.
[16]ZHANG J D,CHOW C Y.GeoSoCa:Exploiting Geographical,Social and Categorical Correlations for Point-of-Interest Recommendations[C]∥Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval.Santiago:ACM Press,2015:443-452.
[1] 王涵, 夏鸿斌. LDA模型和列表排序混合的协同过滤推荐算法[J]. 计算机科学, 2019, 46(9): 216-222.
[2] 邓存彬, 虞慧群, 范贵生. 融合动态协同过滤和深度学习的推荐算法[J]. 计算机科学, 2019, 46(8): 28-34.
[3] 张艳红, 张春光, 周湘贞, 王怡鸥. 项目多属性模糊联合的多样性视频推荐算法[J]. 计算机科学, 2019, 46(8): 78-83.
[4] 康林瑶, 唐兵, 夏艳敏, 张黎. 基于GPU加速和非负矩阵分解的并行协同过滤推荐算法[J]. 计算机科学, 2019, 46(8): 106-110.
[5] 王旭, 庞巍, 王喆. 异构信息网络中基于元结构的协同过滤算法[J]. 计算机科学, 2019, 46(6A): 397-401.
[6] 刘晴晴, 罗永龙, 汪逸飞, 郑孝遥, 陈文. 基于SVD填充的混合推荐算法[J]. 计算机科学, 2019, 46(6A): 468-472.
[7] 卢竹兵, 李玉州. 基于网络评论情感信任分析的推荐策略[J]. 计算机科学, 2019, 46(6): 75-79.
[8] 王永, 王永东, 邓江洲, 张璞. 融合Jensen-Shannon散度的推荐算法[J]. 计算机科学, 2019, 46(2): 210-214.
[9] 张琦, 柳玲, 文俊浩. 一种基于领域信任及不信任的奇异值分解推荐算法[J]. 计算机科学, 2019, 46(10): 27-31.
[10] 陈炯, 张虎, 曹付元. 融合多因素的兴趣点协同推荐方法研究[J]. 计算机科学, 2019, 46(10): 77-83.
[11] 葛梦凡, 刘真, 王娜娜, 田靖玉. 加入标签迁移的跨领域项目推荐算法[J]. 计算机科学, 2019, 46(10): 1-6.
[12] 张洪波, 王佳蕾, 张丽娟, 刘志宏. 基于信任网络的协同过滤推荐方法[J]. 计算机科学, 2018, 45(8): 146-150.
[13] 赵兴旺,梁吉业,郭兰杰. 一种基于空间变换的协同过滤推荐算法[J]. 计算机科学, 2018, 45(7): 16-21.
[14] 何明,要凯升,杨芃,张久伶. 基于标签信息特征相似性的协同过滤个性化推荐[J]. 计算机科学, 2018, 45(6A): 415-422.
[15] 何明, 杨芃, 要凯升, 张久伶. TEFRCF:标签熵特征表示的协同过滤个性化推荐算法[J]. 计算机科学, 2018, 45(6A): 465-470, 486.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 雷丽晖,王静. 可能性测度下的LTL模型检测并行化研究[J]. 计算机科学, 2018, 45(4): 71 -75, 88 .
[2] 夏庆勋,庄毅. 一种基于局部性原理的远程验证机制[J]. 计算机科学, 2018, 45(4): 148 -151, 162 .
[3] 伍建辉,黄中祥,李武,吴健辉,彭鑫,张生. 城市道路建设时序决策的鲁棒优化[J]. 计算机科学, 2018, 45(4): 89 -93 .
[4] 刘琴. 计算机取证过程中基于约束的数据质量问题研究[J]. 计算机科学, 2018, 45(4): 169 -172 .
[5] 王振武,吕小华,韩晓辉. 基于四叉树分割的地形LOD技术综述[J]. 计算机科学, 2018, 45(4): 34 -45 .
[6] 王振朝,侯欢欢,连蕊. 抑制CMT中乱序程度的路径优化方案[J]. 计算机科学, 2018, 45(4): 122 -125 .
[7] 杨羽琦,章国安,金喜龙. 车载自组织网络中基于车辆密度的双簇头路由协议[J]. 计算机科学, 2018, 45(4): 126 -130 .
[8] 韩奎奎,谢在鹏,吕鑫. 一种基于改进遗传算法的雾计算任务调度策略[J]. 计算机科学, 2018, 45(4): 137 -142 .
[9] 庞博,金乾坤,合尼古力·吾买尔,齐兴斌. 软件定义网络中基于网络切片和ILP模型的路由方案[J]. 计算机科学, 2018, 45(4): 143 -147 .
[10] 吴姝,周安民,左政. PDiOS:iOS应用程序中私有API的调用检测[J]. 计算机科学, 2018, 45(4): 163 -168 .