计算机科学 ›› 2019, Vol. 46 ›› Issue (4): 329-333.doi: 10.11896/j.issn.1002-137X.2019.04.051

• 交叉与前沿 • 上一篇    

基于目标矩阵的CPU热点可持续冷却模型

颜兵情1, 袁景凌1,2, 陈旻骋1, 刘东领1, 江涛1   

  1. 武汉理工大学计算机科学与技术学院 武汉4300701
    交通物联网技术湖北省重点实验室 武汉4300702
  • 收稿日期:2018-01-05 出版日期:2019-04-15 发布日期:2019-04-23
  • 通讯作者: 袁景凌(1975-),女,博士,教授,博士生导师,主要研究方向为绿色计算、机器学习、数据挖掘,E-mail:yuanjingling@126.com(通信作者)
  • 作者简介:颜兵情(1990-),男,硕士生,CCF学生会员,主要研究方向为绿色计算、数据挖掘;陈旻骋(1990-),男,博士生,主要研究方向为绿色计算、机器学习、大数据处理;刘东领(1992-),男,硕士生,主要研究方向为绿色计算、机器学习;江 涛(1992-),男,硕士生,主要研究方向为绿色计算、数据挖掘。
  • 基金资助:
    本文受国家自然科学基金(61303029),湖北省创新群体项目(2017CFA012),湖北省技术创新专项重大项目(2017AAA122)资助。

Sustainable Cooling Method of CPU Hot Spot Based on Target Matrix

YAN Bing-qing1, YUAN Jing-ling1,2, CHEN Min-cheng1, LIU Dong-ling1, JIANG Tao1   

  1. College of Computer Science and Technology,Wuhan University of Technology,Wuhan 430070,China1
    Hubei Key Laboratory of Transportation Internet of Things,Wuhan 430070,China2
  • Received:2018-01-05 Online:2019-04-15 Published:2019-04-23

摘要: 为了解决CPU发热导致的自身过热问题,很多学者都提出了各自的CPU降温模型,以实现绿色节能。在已有的热量循环利用模型的基础上,定量分析了CPU热点可持续冷却模型成立的数学条件,建立了CPU降温过程中基于温度变化的目标热量矩阵模型,通过实验分析了热点区域的温度变化等特征,并验证了该数学关系模型的正确性;在比较已有热量循环利用模型的基础上,进一步提出了考虑系统自身散热因素的可持续冷却模型,该模型能够利用所提出的目标热量矩阵进行验证。实验表明,所提出的考虑自身散热的可持续冷却模型的冷却效率提高了0.937%。

关键词: CPU热点, 可持续冷却模型, 目标热量矩阵, 系统自身散热因素

Abstract: In order to solve the CPU overheating problems,many scholars have proposed their own CPU cooling models to achieve energy saving.Based on the previous model of heat cycling,this paper quantitatively analyzed the mathematical conditions of the establishment of the CPU hotspot sustainable cooling model,established the target heat matrix model based on the temperature change during the CPU cooling process,analyzed the temperature change of the hot spot,and verified the correctness of the mathematical relation model.On the basis of comparing the previous models of heat recovery,a cooling model considering the self-heating factor of the system was proposed,which can be carried out by using our proposed target heat matrix.The experimental results show that the cooling efficiency of the cooling model is 0.937%.

Key words: CPU hot spot, Self-cooling factor of system, Sustainable cooling model, Target heat matrix

中图分类号: 

  • TP393
[1]DENG W,LIU F M,JIN H,et al.Leveraging Renewable Energy in Cloud Computing Datacenters:State of the Art and Future Research.Chinese Journal of Computers,2013,36(3):582-598.(in Chinese) 邓维,刘方明,金海,等.云计算数据中心的新能源应用:研究现状与趋势[J].计算机学报,2013,36(3):582-598.
[2]VALENTINI G L,LASSONDE W,KHAN S U,et al.An overview of energy efficiency techniques in cluster computing systems[J].Cluster Computing,2013,16(1):3-15.
[3]WANG W,LUO J Z,SONG A B.Dynamic Pricing Based Energy Cost Optimization in Data Center Environments.Chinese Journal of Computers,2013,36(3):599-612.(in Chinese) 王巍,罗军舟,宋爱波.基于动态定价策略的数据中心能耗成本优化[J].计算机学报,2013,36(3):599-612.
[4]LEE S,PHELAN P E,WU C J.Hot spot cooling and harvesting CPU waste heat using thermoelectric modules∥ASME 2014 International Mechanical Engineering Congress and Exposition.American Society of Mechanical Engineers,2014.
[5]WU C J.Architectural Thermal Energy Harvesting Opportunities for Sustainable Computing[J].IEEE Computer Architecture Letters,2014,13(2):65-68.
[6]SHUJA J,GANI A,SHAMSHIRB S,et al.Sustainable Cloud Data Centers:A survey of enabling techniques and technologies[J].Renewable & Sustainable Energy Reviews,2016,62(9):195-214.
[7]EBRAHIMI K,JONES G F,FLEISCHER A S.A review of data center cooling technology,operating conditions and the corresponding low-grade waste heat recovery opportunities[J].Renewable & Sustainable Energy Reviews,2014,31(2):622-638.
[8]ZHOU R,WANG Z,BASH C E,et al.Data center coolingmana- gement and analysis-a model based approach[C]∥Semiconductor Thermal Measurement and Management Symposium.IEEE,2012:98-103.
[9]ZHU Y,HALPERN M,REDDI V J.Event-based scheduling for energy-efficient QoS (eQoS) in mobile Web applications[C]∥2015 IEEE 21st International Symposium on High Performance Computer Architecture (HPCA).IEEE,2015.
[10]EGILMEZ B,MEMIK G,OGRENCI-MEMIK S,et al.User- specific skin temperature-aware DVFS for smartphones[C]∥Design,Automation and Test in Europe.2015:1217-1220.
[11]LEE S,PANDIYAN D,SEO J S,et al.Thermoelectric-based sustainable self-cooling for fine-grained processor hot spots[C]∥IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems.IEEE,2016:847-856.
[1] 刘鑫, 王珺, 宋巧凤, 刘家豪.
一种基于AAE的协同多播主动缓存方案
Collaborative Multicast Proactive Caching Scheme Based on AAE
计算机科学, 2022, 49(9): 260-267. https://doi.org/10.11896/jsjkx.210800019
[2] 郭鹏军, 张泾周, 杨远帆, 阳申湘.
飞机机内无线通信网络架构与接入控制算法研究
Study on Wireless Communication Network Architecture and Access Control Algorithm in Aircraft
计算机科学, 2022, 49(9): 268-274. https://doi.org/10.11896/jsjkx.210700220
[3] 胡安祥, 尹小康, 朱肖雅, 刘胜利.
基于数据流特征的比较类函数识别方法
Strcmp-like Function Identification Method Based on Data Flow Feature Matching
计算机科学, 2022, 49(9): 326-332. https://doi.org/10.11896/jsjkx.220200163
[4] 姜洋洋, 宋丽华, 邢长友, 张国敏, 曾庆伟.
蜜罐博弈中信念驱动的攻防策略优化机制
Belief Driven Attack and Defense Policy Optimization Mechanism in Honeypot Game
计算机科学, 2022, 49(9): 333-339. https://doi.org/10.11896/jsjkx.220400011
[5] 王磊, 李晓宇.
基于随机洋葱路由的LBS移动隐私保护方案
LBS Mobile Privacy Protection Scheme Based on Random Onion Routing
计算机科学, 2022, 49(9): 347-354. https://doi.org/10.11896/jsjkx.210800077
[6] 王兴伟, 信俊昌, 邵安林, 毕远国, 易秀双.
企业内部工业互联网现状与发展对策研究
Study on Development Status and Countermeasures of Industrial Intranet in Enterprises
计算机科学, 2022, 49(7): 1-9. https://doi.org/10.11896/jsjkx.210900029
[7] 张翀宇, 陈彦明, 李炜.
边缘计算中面向数据流的实时任务调度算法
Task Offloading Online Algorithm for Data Stream Edge Computing
计算机科学, 2022, 49(7): 263-270. https://doi.org/10.11896/jsjkx.210300195
[8] 费星瑞, 谢逸.
基于HMM-NN的用户点击流识别
Click Streams Recognition for Web Users Based on HMM-NN
计算机科学, 2022, 49(7): 340-349. https://doi.org/10.11896/jsjkx.210600127
[9] 赵冬梅, 吴亚星, 张红斌.
基于IPSO-BiLSTM的网络安全态势预测
Network Security Situation Prediction Based on IPSO-BiLSTM
计算机科学, 2022, 49(7): 357-362. https://doi.org/10.11896/jsjkx.210900103
[10] 王思明, 谭北海, 余荣.
面向6G可信可靠智能的区块链分片与激励机制
Blockchain Sharding and Incentive Mechanism for 6G Dependable Intelligence
计算机科学, 2022, 49(6): 32-38. https://doi.org/10.11896/jsjkx.220400004
[11] Ran WANG, Jiang-tian NIE, Yang ZHANG, Kun ZHU.
Clustering-based Demand Response for Intelligent Energy Management in 6G-enabled Smart Grids
Clustering-based Demand Response for Intelligent Energy Management in 6G-enabled Smart Grids
计算机科学, 2022, 49(6): 44-54. https://doi.org/10.11896/jsjkx.220400002
[12] 魏辉, 陈泽茂, 张立强.
一种基于顺序和频率模式的系统调用轨迹异常检测框架
Anomaly Detection Framework of System Call Trace Based on Sequence and Frequency Patterns
计算机科学, 2022, 49(6): 350-355. https://doi.org/10.11896/jsjkx.210500031
[13] 陶礼靖, 邱菡, 朱俊虎, 李航天.
面向网络安全训练评估的受训者行为描述模型
Model for the Description of Trainee Behavior for Cyber Security Exercises Assessment
计算机科学, 2022, 49(6A): 480-484. https://doi.org/10.11896/jsjkx.210800048
[14] 何茜, 贺可太, 王金山, 林绅文, 杨菁林, 冯玉超.
比特币实体交易模式分析
Analysis of Bitcoin Entity Transaction Patterns
计算机科学, 2022, 49(6A): 502-507. https://doi.org/10.11896/jsjkx.210600178
[15] 高文龙, 周天阳, 朱俊虎, 赵子恒.
基于双向蚁群算法的网络攻击路径发现方法
Network Attack Path Discovery Method Based on Bidirectional Ant Colony Algorithm
计算机科学, 2022, 49(6A): 516-522. https://doi.org/10.11896/jsjkx.210500072
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!