计算机科学 ›› 2019, Vol. 46 ›› Issue (6): 95-101.doi: 10.11896/j.issn.1002-137X.2019.06.013

• 网络与通信 • 上一篇    下一篇

融合学习差分进化和粒子群优化算法的认知决策引擎

张煜培1, 赵知劲1,2, 郑仕链2   

  1. (杭州电子科技大学浙江省数据存储传输及应用技术研究重点实验室 杭州310018)1
    (中国电子科技集团第36研究所通信系统信息控制技术国家级重点实验室 浙江 嘉兴314001)2
  • 收稿日期:2018-05-27 发布日期:2019-06-24
  • 通讯作者: 赵知劲(1959-),女,博士,教授,博士生导师,主要研究方向为认知无线电、通信信号处理,E-mail:zhaozj03@hdu.edu.cn
  • 作者简介:张煜培(1995-),男,硕士生,主要研究方向为认知无线电,E-mail:1354136083@qq.com;郑仕链(1984-),男,博士,高级工程师,主要研究方向为认知无线电、压缩感知、进化算法。
  • 基金资助:
    “十二五”国防预研项目基金(41001010401)资助。

Cognitive Decision Engine of Hybrid Learning Differential Evolution and Particle Swarm Optimization

ZHANG Yu-pei1, ZHAO Zhi-jin1,2, ZHENG Shi-lian2   

  1. (Zhejiang Provincial Key Lab of Data Storage and Transmission Technology of Hangzhou Dianzi University,Hangzhou 310018,China)1
    (State Key Lab of Information Control Technology in Communication System,No.36 Research Institute of China Electronic Technology Corporation,Jiaxing,Zhejiang 314001,China)2
  • Received:2018-05-27 Published:2019-06-24

摘要: 为了提高认知无线电系统的参数决策速度和性能,提出一种融合粒子群和学习差分进化算法的认知无线电决策引擎(HPSO-BLDE)。首先,对学习差分进化算法引入自适应变异机制,使得每条染色体随个体适应度和平均适应度进行自适应变异,提高其局部寻优能力。然后,改进粒子群算法的学习因子,并加入扰动项,防止算法早熟;选用更合适的变换函数,将正反向速度转换为相同概率更新粒子位置,提高最优解的精度,从而提高粒子群算法的全局寻优能力。最后,在认知引擎模型中并行地运行改进的粒子群算法(IBPSO)和差分进化算法(IBLDE),每隔固定的迭代次数后,融合两种算法的最优个体信息,得到HPSO-BLDE算法,使IBPSO算法和IBLDE算法的种群兼具二者的优点,从而提高了最优解的求解精度并加快了收敛速度。多载波通信系统的参数决策仿真结果表明,IBPSO算法、IBLDE算法和HPSO-BLDE算法的性能优于已有的爬山遗传(HGA)算法、量子粒子群算法(BQPSO)和二进制学习差分进化算法(BLDE),其中HPSO-BLDE算法的性能最优。

关键词: 差分进化, 粒子群优化, 认知决策引擎, 认知无线电, 重配置

Abstract: In order to increase the speed and performance of parameter decision in cognitive radio system,a cognitive radio decision engine (HPSO-BLDE) based on hybrid particle swarm optimization and learning differential evolution algorithm was proposed.First,the adaptive mutation mechanism is introduced into the learning differential evolution algorithm,so that each chromosome adaptively varies with individual fitness and average fitness to improve its local optimization capability.Then,the learning factor of particle swarm optimization algorithm is modified and the perturbation is added to prevent the premature.The more appropriate transform function is selected to convert the forward and backward velocity to the same probability to update the particle position and improve the precision of the optimal solution,thus improving the global optimization solution.Finally,the improved binary particle swarm optimization (IBPSO) and the improved binary differential evolution algorithm (IBLDE) are run in parallel in the cognitive engine model,and the best individual information of the two algorithms is fused after a fixed number of iterations to obtain the HPSO-BLDE algorithm.The populations of IBPSO algorithm and IBLDE algorithm have the both advantages,thus the optimal solution accuracy and convergence speed of the HPSO-BLDE algorithm are enhanced.Parameter decision simulation results of multi-carrier communication system shows that the IBPSO algorithm,IBLDE algorithm and HPSO-BLDE algorithm have better performance than hilling genetic algorithm (HGA),binary quantum particle swarm algorithm (BQPSO) and binary learningdifferential evolution algorithm (BLDE),and HPSO-BLDE algorithm has the best performance among these algorithms.

Key words: Cognitive decision engine, Cognitive radio, Differential evolution, Particle swarm optimization, Reconfiguration

中图分类号: 

  • TN929.5
[1]LUO Y Y,SUN Z F.Cognitive radio decision engine based on adaptive ant colony optimization[J].Computer Science,2011,38(8):253-256.(in Chinese)
罗云月,孙志峰.基于自适应蚁群优化算法的认知决策引擎[J].计算机科学,2011,38(8):253-256.
[2]YOU X,HE X,HAN X,et al.A novel cross-layer decision engine for cognitive radio based on quick-CQABC algorithm and channel gain information[J].Journal of Computational Information Systems,2015,11(14):5227-5242.
[3]PARASKEVOPOULOS A,DALLAS P I,SIAKAVARA K,et al. Cognitive radio engine design for IoT using real-coded bio-geography-based optimization and fuzzy decision making[J].Wireless Personal Communications,2017,97(2):1-21.
[4]CLANCY T C.Dynamic spectrum access using the interference temperature model[J].Annals of Telecommunications-annales Des Télé communications,2009,64(7-8):573-592.
[5]BKASSINY M,LI Y,JAYAWEERA S K.A survey on machine-learning techniques in cognitive radios[J].IEEE Communications Surveys & Tutorials,2013,15(3):1136-1159.
[6]DONG X,LI Y,WU C,et al.A learner based on neural network for cognitive radio[C]∥IEEE International Conference on Communication Technology.IEEE,Nanjing,China,2010:893-896.
[7]YIN L,YIN S X,HONG W,et al.Spectrum behavior learning in Cognitive Radio based on artificial neural network[C]∥2011- MILCOM,2011 Military Communications Conference.IEEE,Baltimore,MD,USA,2012.
[8]RIESER C J.Biologically inspired cognitive radio engine model utilizing distributed genetic algorithms for secure and robust wireless communications and networking[M].Virginia Polytechnic Institute and State Universtity Press,2004.
[9]ZHAO Z J,ZHENG S L,SHANG J N,et al.A study of cognitive radio decision engine based on quantum genetic algorithm[J].Acta Physica Sinica,2007,56(11):6760-6766.(in Chinese)
赵知劲,郑仕链,尚俊娜,等.基于量子遗传算法的认知无线电决策引擎研究[J].物理学报,2007,56(11):6760-6766.
[10]ZHAO Z J,XU S Y,ZHENG S L,et al.Cognitive radio decision engine based on binary particle swarm optimization[J].Acta Physica Sinica,2009,58(7):5118-5125.(in Chinese)
赵知劲,徐世宇,郑仕链,等.基于二进制粒子群算法的认知无线电决策引擎[J].物理学报,2009,58(7):5118-5125.
[11]XU H,ZHOU Z.Hill-climbing genetic algorithm optimization in cognitive radio decision engine[C]∥IEEE International Confe-rence on Communication Technology.IEEE,Guilin,China,2014:115-119.
[12]ZHANG J,ZHOU Z,GAO W,et al.Cognitive radio adaptation decision engine based on binary quantum-behaved particle swarm optimization[C]∥International ICST Conference on Communications and Networking in China.IEEE,Harbin,China,2011:221-225.
[13]ISLAM M J,LI X,MEI Y.A Time-varying transfer function for balancing the exploration and exploitation ability of a binary PSO[J].Applied Soft Computing,2017,20(5):1-43.
[14]SARHANI M,AFIA A E,FAIZI R,et al.Facing the feature selection problem with a binary PSO-GSA Approach[M]∥Recent Developments in Metaheuristics.Springer International Publi-shing.Rabat,Morocco,2018.
[15]CHEN Y,XIE W,ZOU X.A binary different evolution algo-rithm learning from explored solutions[J].Neurocomputing,2015,149:138-1047.
[16]YOU X,HE X,HAN X.A novel solution to the cognitive radio decision engine based on improved multi-objective artificial bee colony algorithm and fuzzy reasoning[J].Intelligent Automation &Soft Computing,2017,23(4):1-9.
[17]KAUR K,RATTAN M,PATTERH M S.Biogeography-based optimisation of Cognitive Radio system[J].International Journal of Electronics,2014,101(1):24-36.
[18]RATNAWEERA A,HALGAMUGE S K,WATSON H C.Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients[J].IEEE Transactions on Evolutionary Computation,2004,8(3):240-255.
[19]CHENG R,JIN Y.A competitive swarm optimizer for large scale optimization[J].IEEE Transactions on Cybernetics,2015,45(2):191.
[1] 赵冬梅, 吴亚星, 张红斌.
基于IPSO-BiLSTM的网络安全态势预测
Network Security Situation Prediction Based on IPSO-BiLSTM
计算机科学, 2022, 49(7): 357-362. https://doi.org/10.11896/jsjkx.210900103
[2] 刘宝宝, 杨菁菁, 陶露, 王贺应.
基于DE-LSTM模型的教育统计数据预测研究
Study on Prediction of Educational Statistical Data Based on DE-LSTM Model
计算机科学, 2022, 49(6A): 261-266. https://doi.org/10.11896/jsjkx.220300120
[3] 刘漳辉, 郑鸿强, 张建山, 陈哲毅.
多无人机使能移动边缘计算系统中的计算卸载与部署优化
Computation Offloading and Deployment Optimization in Multi-UAV-Enabled Mobile Edge Computing Systems
计算机科学, 2022, 49(6A): 619-627. https://doi.org/10.11896/jsjkx.210600165
[4] 屈立成, 吕娇, 屈艺华, 王海飞.
基于模糊神经网络的运动目标智能分配定位算法
Intelligent Assignment and Positioning Algorithm of Moving Target Based on Fuzzy Neural Network
计算机科学, 2021, 48(8): 246-252. https://doi.org/10.11896/jsjkx.200600050
[5] 房婷, 宫傲宇, 张帆, 林艳, 贾林琼, 张一晋.
一种传输时限下认知无线电网络的动态广播策略
Dynamic Broadcasting Strategy in Cognitive Radio Networks Under Delivery Deadline
计算机科学, 2021, 48(7): 340-346. https://doi.org/10.11896/jsjkx.200900001
[6] 俞家珊, 吴雷.
双领导者樽海鞘群算法
Two Types of Leaders Salp Swarm Algorithm
计算机科学, 2021, 48(4): 254-260. https://doi.org/10.11896/jsjkx.200600181
[7] 张志强, 鲁晓锋, 隋连升, 李军怀.
集成随机惯性权重和差分变异操作的樽海鞘群算法
Salp Swarm Algorithm with Random Inertia Weight and Differential Mutation Operator
计算机科学, 2020, 47(8): 297-301. https://doi.org/10.11896/jsjkx.190700063
[8] 侯改, 何朗, 黄樟灿, 王占占, 谈庆.
基于差分进化的金字塔演化策略求解一维下料问题
Pyramid Evolution Strategy Based on Differential Evolution for Solving One-dimensional Cutting Stock Problem
计算机科学, 2020, 47(7): 166-170. https://doi.org/10.11896/jsjkx.190500014
[9] 宋岩, 胡瑢华, 郭福民, 袁新亮, 熊睿洋.
基于sEMG的改进SVM+BP肌力预测分层算法
Improved SVM+BP Algorithm for Muscle Force Prediction Based on sEMG
计算机科学, 2020, 47(6A): 75-78. https://doi.org/10.11896/JsJkx.190900143
[10] 田苗苗, 王祖林, 徐迈.
基于认知无线电的DVB-S2信号接收与解析
DVB-S2 Signal Receiving and Analysis Based on Cognitive Radio
计算机科学, 2020, 47(4): 226-232. https://doi.org/10.11896/jsjkx.190700210
[11] 李章维,王柳静.
基于群体分布的自适应差分进化算法
Population Distribution-based Self-adaptive Differential Evolution Algorithm
计算机科学, 2020, 47(2): 180-185. https://doi.org/10.11896/jsjkx.181202356
[12] 郑波, 马昕.
基于双变异粒子群优化算法优化的支持向量机及其在民航发动机损伤类型识别中的应用
Application on Damage Types Recognition in Civil Aeroengine Based on SVM Optimized by DMPSO
计算机科学, 2020, 47(11A): 132-138. https://doi.org/10.11896/jsjkx.200600101
[13] 王瑄, 毛莺池, 谢在鹏, 黄倩.
基于差分进化的推断任务卸载策略
Inference Task Offloading Strategy Based on Differential Evolution
计算机科学, 2020, 47(10): 256-262. https://doi.org/10.11896/jsjkx.190800159
[14] 王立志,慕晓冬,刘宏岚.
采用改进粒子群优化的SVM方法实现中文文本情感分类
Using SVM Method Optimized by Improved Particle Swarm Optimization to Analyze Emotion of Chinese Text
计算机科学, 2020, 47(1): 231-236. https://doi.org/10.11896/jsjkx.181102130
[15] 薛玲玲, 樊秀梅.
基于分簇结构的车联网认知频谱分配机制
Cognitive Spectrum Allocation Mechanism in Internet of Vehicles Based on Clustering Structure
计算机科学, 2019, 46(9): 143-149. https://doi.org/10.11896/j.issn.1002-137X.2019.09.020
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!