计算机科学 ›› 2019, Vol. 46 ›› Issue (7): 186-194.doi: 10.11896/j.issn.1002-137X.2019.07.029

• 人工智能 • 上一篇    下一篇

带有时间标签的流行社交位置发现

刘长赟,杨宇迪,周丽华,赵丽红   

  1. (云南大学信息学院 昆明650091)
  • 收稿日期:2018-08-01 出版日期:2019-07-15 发布日期:2019-07-15
  • 作者简介:刘长赟(1992-),男,硕士,主要研究方向为数据挖掘;杨宇迪(1995-),女,硕士生,主要研究方向为数据挖掘;周丽华(1968-),女,博士,教授,CCF会员,主要研究方向为数据挖掘、社会网络分析,E-mail:lhzhou@ynu.edu.cn(通信作者);赵丽红(1974-),女,硕士,主要研究方向为数据挖掘。
  • 基金资助:
    国家自然科学基金(61762090,61262069,61472346,61662086),云南省自然科学基金(2016FA026,2015FB114),云南省创新研究团队项目(2018HC019),云南省高等学校科技创新团队项目(IRTSTYN)资助

Discovering Popular Social Location with Time Label

LIU Chang-yun,YANG Yu-di,ZHOU Li-hua,ZHAO Li-hong   

  1. (School of Information Science and Engineering,Yunnan University,Kunming 650091,China)
  • Received:2018-08-01 Online:2019-07-15 Published:2019-07-15

摘要: 流行社交位置是指大多数人日常生活中经常访问的位置,其广泛应用于推荐系统、定向广告应用等领域。随着基于位置的社交网络(Location-Based Social Network,LBSN)的迅速发展,流行社交位置的挖掘成为时空数据挖掘中的一个研究热点。然而,现有的研究主要是从LBSN中挖掘流行社交位置,忽略了流行社交位置的时间因素,因此,文中提出了带有时间标签的流行社交位置发现算法。该算法首先量化LBSN数据集中的时间信息,得到个体用户带有时间标签的频繁社交位置集合;然后计算这些带时间标签的位置在群体用户中的流行度;最后识别出符合要求的带时间标签的流行社交位置。文中采用约10个月的Foursquare东京用户签到数据对该算法的效率和正确性进行验证,结果表明,该算法能够较为准确地发现带有时间标签的流行社交位置。

关键词: 时空数据挖掘, 基于位置的社交网络, 流行社交位置, 带有时间标签的流行社交位置

Abstract: The popular social location means the places that most people visit frequently in daily life,which is widely used in recommendation systems,targeted advertisement applications,and other fields.With the rapid development of location-based social networks (LBSN),the identification of popular social locations has become an important hot research point in spatio-temporal data mining.However,the existing research mainly focuses on mining popular social locations from LBSN,but ignores the time factor of popular social locations.Therefore,this paper proposed a new algorithm for mining popular locations with time label.The proposed algorithm first quantifies the time information in the LBSN dataset to obtain a set of frequent social locations with respect to individual users,then calculates the popularity of these locations with respect to group of users,and then identifies popular social locations that meet the requirements.This paper validated the efficiency and correctness of the algorithm by using the Foursquare Tokyo user check-in data for about 10 months.The results show that the proposed algorithm can find the popular social location with time label more accurately.

Key words: Spatio-temporal data mining, Location-based social network, Popular social location, Popular social location with time label

中图分类号: 

  • TP301
[1] YUAN Q,CONG G,MA Z,et al.Time-aware point-of-interest recommendation[C]∥Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval.New York:ACM Press,2013.
[2] YUAN Q,CONG G,AIXIN S.Graph-based Point-of-interest Recommendation with Geographical and Temporal Influences[C]∥Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management.Shanghai:ACM Press,2014:659-668.
[3] GAO H,TANG J,HU X,et al.Exploring temporal effects for location recommendation on location-based social networks[C]∥Proceeding of the 7th ACM Conference on Recommender Systems.Hong Kong:ACM Press,2013:93-100.
[4] BARAB SI A L.The origin of bursts and heavy tails in human dynamics[J].Nature,2005,435(7039):207-211.
[5] FAN C,GUO J L,HAN X P,et al.A Review of Research on Human Dynamics[J].Complex Systems and Complexity Science,2011,8(2):1-17.(in Chinese)樊超,郭进利,韩筱璞,等.人类行为动力学研究综述[J].复杂系统与复杂性科学,2011,8(2):1-17.
[6] DOKUZ A S,CELIK M.Discovering socially important loca- tions of social media users[J].Expert Systems With Applications,2017(86):113-124.
[7] JIM NEZ M,SORIANO J,CANTERA J M,et al.New Trends in Semantic-Based Location and Context-Aware Adaptation for Mobile Web Applications Development[J].Current Topics in Medicinal Chemistry,2012,3(5):513.
[8] MOKBEL M F,LEVANDOSKI J J.Toward context and prefe- rence-aware location-based services[C]∥Proceedings of the 8th ACM International Workshop on Data Engineering for Wireless and Mobile Access.Providence RI:ACM Press,2009:25-32.
[9] MAROULIS S,BOUTSIS I,KALOGERAKI V.Context-aware point of interest recommendation using tensor factorization[C]∥Proceedings of the 4th IEEE International Conference on Big Data.Washington DC:IEEE Press,2016:963-968.
[10] PARK H,RHO S,PARK J.A Link-Based Ranking Algorithm for Semantic Web Resources:A Class-Oriented Approach Independent of Link Direction[J].Journal of Database Management,2017,22(1):1-25.
[11] YAO L,SHENG Q Z,QIN Y,et al.Context-aware Point-of-Interest Recommendation Using Tensor Factorization with Social Regularization[C]∥Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval.Santiago:ACM Press,2015:1007-1010.
[12] CHEN G,LU J,ZHANG Z N.Research on topic-based key node discovery in mobile social network[J].Application Research of Computers,2017,34(7):2010-2015.(in Chinese)陈功,卢菁,张仲楠.基于主题划分的移动社交网络关键位置发现研究[J].计算机应用研究,2017,34(7):2010-2015.
[13] LINDEN G,SMITH B,YORK J.Amazon.com Recommendations:Item-to-Item Collaborative Filtering[J].IEEE Internet Computing,2003,7(1):76-80.
[14] SARWAR B,KARYPIS G,KONSTAN J,et al.Item-based collaborative filtering recommendation algorithms[C]∥Procee-dings of the International Conference on World Wide Web.Hong Kong:ACM Press,2001:285-295.
[15] ZHANG C,WANG K.POI recommendation through cross-re- gion collaborative filtering[J].Knowledge and Information Systems,2016,46(2):369-387.
[16] DAO T H,JEONG S R,AHN H.A novel recommendation mo- del of location-based advertising:Context-Aware Collaborative Filtering using GA approach[J].Expert Systems with Applications,2012,39(3):3731-3739.
[17] CHEN C C,CHIANG M F,PENG W C.Mining and clustering mobility evolution patterns from social media for urban informatics[J].Knowledge and Information Systems,2016,47(2):381-403.
[18] CELIKTEN E,FALHER G L,MATHIOUDAKIS M.Modeling Urban Behavior by Mining Geotagged Social Data[J].IEEE Transactions on Big Data,2017,3(2):220-233.
[19] ZHAO K,TARKOMA S,LIU S Y,et al.Urban Human Mo- bility Data Mining:An Overview[C]∥Proceedings of the 4th IEEE International Conference on Big Data.Washington DC:IEEE Press,2016:1911-1920.
[20] CELIK M,DOKUZ A S.Discovering Socio-spatio-temporal Important Location of Social Media Users[J].Journal of Computation Science,2017(22):85-98.
[21] ZHANG D C,LI M,WANG C D.Point of interest recommendation with social and geographical influence[C]∥Proceedings of the 4th IEEE International Conference on Big Data.Washington DC:IEEE Press,2016:1070-1075.
[22] YE M,YIN P,LEE W C,et al.Exploiting geographical influence for collaborative point-of-interest recommendation[C]∥Proceedings of the 34th ACM SIGIR international conference on Research and development in Information Retrieval.Beijing:ACM Press,2011:325-334.
[23] LEVANDOSKI J J,SARWAT M,ELDAWY A,et al.LARS:A Location-Aware Recommender System[C]∥Proceedings of the IEEE 28th International Conference on Data Engineering.Arlington VA:IEEE Computer Society,2012:450-461.
[24] BAO J,ZHENG Y,MOKBEL M F.Location-based and prefe- rence-aware recommendation using sparse geo-social networking data[C]∥Proceedings of the 20th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems.Redondo Beach CA:ACM Press,2012:199-208.
[25] CUI C,SHEN J,NIE L,et al.Augmented Collaborative Filte- ring for Sparseness Reduction in Personalized POI Recommendation[J].ACM Transactions on Intelligent Systems and Technology,2017,8(5):1-23.
[26] CHO E,MYERS S A,LESKOVEC J.Friendship and mobility:user movement in location-based social networks[C]∥Procee-dings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.San Diego CA:ACM Press,2011:1082-1090.
[27] ZHANG J D,CHOW C Y.TICRec:A Probabilistic Framework to Utilize Temporal Influence Correlations for Time-Aware Location Recommendations[J].IEEE Transactions on Services Computing,2016,9(4):633-646.
[28] BALTRUNAS L,AMATRIAIN X.Towards time-dependant recommendation based on implicit feedback[R].New York:Workshop on Context-aware Recommender Systems,2009.
[29] SI L F,ZHANG F Z,LIU W Y.A Time-aware POI Recommendation Method Exploiting User-based Collaborative Filtering and Location Popularity[C]∥Proceedings of the 2nd International Conference on Communications,Information Management and Network Security.Beijing:Destech Publicat.2017:17-25.
[30] GAO H,TANG J,HU X,et al.Modeling temporal effects of human mobile behavior on location-based social networks[C]∥Proceedings of the 22nd ACM International Conference on Information and Knowledge Management.San Francisco CA:ACM Press,2013:1673-1678.
[31] ZHANG J D,CHOW C Y.Spatiotemporal Sequential Influence Modeling for Location Recommendations:A Gravity-based Approach[J].ACM Transactions on Intelligent Systems & Technology,2015,7(1):1-25.
[32] YE M,JANOWICZ K,LEE W C.What you are is when you are:the temporal dimension of feature types in location-based social networks[C]∥Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems.Chicago IL:ACM Press,2011:102-111.
[33] LI X,JIANG M,HONG H,et al.A Time-Aware Personalized Point-of-Interest Recommendation via High-Order Tensor Factorization[J].Acm Transactions on Information Systems,2017,35(4):1-23.
[34] YING Y,CHEN L,CHEN G.A temporal-aware POI recom- mendation system using context-aware tensor decomposition and weighted HITS[J].Neurocomput.,2017(242):195-205.
[35] YANG D,ZHANG D,ZHENG V W,et al.Modeling User Activity Preference by Leveraging User Spatial Temporal Characteristics in LBSNs[J].IEEE Transactions on Systems Man & Cybernetics Systems,2014,45(1):129-142.
[36] LI M,WANG X C,ZHANG J,et al.Study on Check-in and Related Behaviors of Location-based Social Network Users[J].Computer Science,2013,40(10):72-76.(in Chinese)李敏,王晓聪,张军,等.基于位置的社交网络用户签到及相关行为研究[J].计算机科学,2013,40(10):72-76.
[1] 陈炯, 张虎, 曹付元. 融合多因素的兴趣点协同推荐方法研究[J]. 计算机科学, 2019, 46(10): 77-83.
[2] 罗惠,郭斌,於志文,王柱,封云. 基于网络拓扑和地理特征融合的朋友关系预测模型[J]. 计算机科学, 2014, 41(6): 43-47.
[3] 李敏,王晓聪,张军,刘正捷. 基于位置的社交网络用户签到及相关行为研究[J]. 计算机科学, 2013, 40(10): 72-76.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 夏庆勋,庄毅. 一种基于局部性原理的远程验证机制[J]. 计算机科学, 2018, 45(4): 148 -151, 162 .
[2] 刘琴. 计算机取证过程中基于约束的数据质量问题研究[J]. 计算机科学, 2018, 45(4): 169 -172 .
[3] 翁理国,孔维斌,夏旻,仇学飞. 基于深度极限学习机的卫星云图云量计算[J]. 计算机科学, 2018, 45(4): 227 -232 .
[4] 丁舒阳,黎冰,侍洪波. 基于改进的离散PSO算法的FJSP的研究[J]. 计算机科学, 2018, 45(4): 233 -239, 256 .
[5] 蔡莉,梁宇,朱扬勇,何婧. 数据质量的历史沿革和发展趋势[J]. 计算机科学, 2018, 45(4): 1 -10 .
[6] 王正理,谢添,何琨,金燕. 考虑时间因素的0-1背包调度问题[J]. 计算机科学, 2018, 45(4): 53 -59 .
[7] 邓霞, 常乐, 梁俊斌, 蒋婵. 移动机会网络组播路由的研究进展[J]. 计算机科学, 2018, 45(6): 19 -26 .
[8] 赖文星, 邓忠民. 基于支配强度的NSGA2改进算法[J]. 计算机科学, 2018, 45(6): 187 -192 .
[9] 崔一辉, 宋伟, 彭智勇, 杨先娣. 基于差分隐私的多源数据关联规则挖掘方法[J]. 计算机科学, 2018, 45(6): 36 -40,56 .
[10] 成静, 张涛, 王涛, 董占伟. 一种基于图复杂度的移动导航服务回归测试优先方法[J]. 计算机科学, 2018, 45(6): 141 -144,155 .