计算机科学 ›› 2019, Vol. 46 ›› Issue (9): 277-283.doi: 10.11896/j.issn.1002-137X.2019.09.042

• 图形图像与模式识别 • 上一篇    下一篇

基于卷积网络的边缘保持滤波方法

石晓红1,2,3, 黄钦开4, 苗佳欣5, 苏卓4,5   

  1. (广州大学数学与信息科学学院 广州510006)1;
    (广州大学计算科技研究院 广州510006)2;
    (广东省数学教育软件工程技术研究中心 广州510006)3;
    (中山大学数据科学与计算机学院 广州510006)4;
    (中山大学国家数字家庭工程技术研究中心 广州510006)5
  • 收稿日期:2018-08-30 出版日期:2019-09-15 发布日期:2019-09-02
  • 通讯作者: 苏 卓(1985-),男,博士,CCF会员,主要研究方向为计算机视觉、图形图像处理,E-mail:suzhuo3@mail.sysu.edu.cn
  • 作者简介:石晓红(1978-),女,硕士,主要研究方向为图像处理;黄钦开(1994-),男,硕士生,主要研究方向为图像处理;苗佳欣(1994-),女,硕士生,主要研究方向为图像处理;
  • 基金资助:
    国家自然科学基金青年基金项目(61502541),2016年贵州省科技平台及人才团队专项资金项目(黔科合平台人才5609),2016年贵州省省级重点支持学科“计算机应用技术”(黔学位合字ZDXK20号),广州大学研究生创新能力培养资助计划(2018GDJC-D03)

Edge-preserving Filtering Method Based on Convolutional Neural Networks

SHI Xiao-hong1,2,3, HUANG Qin-kai4, MIAO Jia-xin5, SU Zhuo4,5   

  1. (School of Mathematics and Information Science,Guangzhou University,Guangzhou 510006,China)1;
    (Institute of Computing Science and Technology,Guangzhou University,Guangzhou 510006,China)2;
    (Guangdong Provincial Engineering and Technology Research Center for Mathematical Education Software,Guangzhou 510006,China)3;
    (School of Data and Computer Science,Sun Yat-sen University,Guangzhou 510006,China)4;
    (National Engineering Research Center of Digital Life,Sun Yat-sen University,Guangzhou 510006,China)5
  • Received:2018-08-30 Online:2019-09-15 Published:2019-09-02

摘要: 边缘保持滤波是计算机视觉、图像处理领域的重要基础理论研究,作为图像预处理操作对后续的处理结果有着重要影响。区别于传统滤波方法,边缘保持滤波方法不仅注重图像的平滑处理,还注重保持边缘细节。卷积神经网络在很多领域得到了应用,并取得显著的成果。本文将卷积神经网络引入边缘保持滤波,利用卷积神经网络的良好扩展性和灵活性来构建深度卷积神经网络模型(Deep Convolutional Neural Network,DCNN),通过3种类型的网络堆叠层,采用反向传播迭代更新网络参数,训练残差图像,实现基于DCNN的边缘保持滤波方法;还构建了基于梯度域的卷积神经网络模型(Gradient CNN,GCNN),对彩色图像的梯度信息进行学习,通过三层卷积对梯度图进行边缘保持平滑操作,得到边缘保持平滑梯度图,进而利用输入图像引导平滑梯度图进行彩色重建,得到彩色滤波图像。最后通过实验与常见的边缘保持滤波方法进行主观和客观评价对比。DCNN不仅在视觉上达到了其他滤波的效果,同时在处理时间上也存在较大优势,表明DCNN可以通过大量的数据训练有效地拟合出多种边缘保持滤波算法。与其他边缘保持滤波结果相比,GCNN在视觉上可以保持颜色风格与输入图像整体一致,而且图像相似度评价指标也更好,表明GCNN解决了部分滤波处理出现颜色偏差、梯度反转等问题,而且提高了处理效率。

关键词: 滤波, 边缘保持, 平滑操作, 卷积神经网络

Abstract: Edge-preserving filtering is a significant basic theory research in the fields of computer vision and image processing.As subsequent operation of pre-processing,edge-preserving filtering has great influence on final results of image processing.Different with traditional filtering,edge-preserving filtering focuses not only on smooth,but also on image edge details.Convolutional neural networks (CNNs) have been applied into a variety of research fields with great success.In this paper,CNN was introduced into edge-preserving filtering.Taking advantages of CNN’s excellent extensibility and flexibility,this paper constructed a deep convolutional neural network (DCNN).With three types of cascading network layers,DCNN iteratively updates its parameters by back propagation,produces a residual image and realizes a DCNN-based edge-preserving filtering.Besides,a gradient CNN model (GCNN) was constructed.The gradient of color images is learnt,edge-preserving smoothing operation is conducted for gradient images by three layers of convolution,and edge-preserving filtering gradient images are obtained.Subsequently,the input image is used to guide the filtering gradient image for reconstructing and obtaining color filtering image.Finally,experiments were made to evaluate the proposed methods and the proposed methods were compared with popular edge-preserving filtering methods subjectively and objectively.DCNN not only achieves the same visual effects as other methods,but also has big advantages in processing time,which demonstrates that DCNN can effectively and efficiently imitate various filtering methods through training on large amount of data.For GCNN,in terms of visual effects,its output conforms to the input in the color style globally.In terms of image similarity evaluation,it also outperforms other methods.This verifies that GCNN can address the problems of color shift and gradient inversion,as well as improve the filtering efficiency.

Key words: Filtering, Edge-preserving, Smoothing, Convolutional neural networks

中图分类号: 

  • TP391
[1]FARBMAN Z,FATTAL R,LISCHINSKI D.Edge-preservingdecompositions for multi-scale tone and detail manipulation [J].ACM Transactions on Graphics (TOG),2008,27(3):1-10.
[2]PARIS S,HASINOFF S W,KAUTZ J.Local Laplacian filters:edge-aware image processing with a Laplacian pyramid [J].ACM Transactions on Graphics (TOG),2015,58(3):81-91.
[3]GASTAL E S L,OLIVEIRA M M.Domain transform for edge-aware image and video processing[J].ACM Transactions on Graphics (TOG),2011,30(4):Article No.69.
[4]PARIS S,DURAND F.A fast approximation of the bilateral filter using a signal processing approach [J].International Journal of Computer Vision,2009,81(1):24-52.
[5]XU L,LU C,XU Y,et al.Image smoothing via L0 gradient mini-mization [J].ACM Transactions on Graphics (TOG),2011,30(6):174.
[6]TOMASI C,MANDUCHI R.Bilateral filtering for gray and co-lor images [C]//1998 IEEE Sixth International Conference on Computer Vision (ICCV’98).Piscataway,NJ:IEEE,1998:839-846.
[7]PORIKLI F.Constant time O (1) bilateral filtering [C]//2008 IEEE Conference on Computer Vision and Pattern Recognition (CVPR’08).Piscataway,NJ:IEEE,2008:1-8.
[8]YANG Q,TAN K,AHUJA N.Real-time O (1) bilateral filtering [C]//2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR’09).Piscataway,NJ:IEEE,2009:557-564.
[9]HE K,SUN J,TANG X.Guided image filtering [C]//European Conference on Computer Vision (ECCV’10).New York,NY:Springer,2010:1-14.
[10]PERONA P,MALIK J.Scale-space and edge detection using anisotropic diffusion [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1990,12(7):629-639.
[11]XU L,YAN Q,XIA Y,et al.Structure extraction from texture via relative total variation [J].ACM Transactions on Graphics,2012,31(6):Article No.139.
[12]DONG C,LOY C C,HE K et al.Image super-resolution using deep convolutional networks [J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2016,38(2):295-307.
[13]XIE J,XU L,CHEN E.Image denoising and inpainting withdeep neural networks [C]//25th International Conference on Neural Information Processing Systems.Red Hook,NY:Curran Associates,Inc.,2012:341-349.
[14]LIU S,PAN J,YANG M.Learning recursive filters for low-level vision via a hybrid neural network [C]//European Conference on Computer Vision (ECCV’16).New York,NY:Springer,2016:560-576.
[15]LI Y,HUANG J,AHUJA N,et al.Deep joint image filtering[C]//European Conference on Computer Vision (ECCV’16).New York,NY:Springer,2016:154-169.
[16]SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition [C]//International Conference on Learning Representations 2015 (ICLR2015).San Die-go,CA,2015.
[17]SZEGEDY C,LIU W,JIA Y,et al.Going deeper with convolutions [C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR’15).Piscataway,NJ:IEEE,2015:1-9.
[18]XU L,REN J,YAN Q,et al.Deep edge-aware filters [C]//International Conference on Machine Learning.2015:1669-1678.
[19]ZHANG Q,SHEN X,XU L et al.Rolling guidance filter [C]//European Conference on Computer Vision (ECCV’14).New York,NY:Springer,2014:815-830.
[20]KARACAN L,ERDEM E,ERDEM A.Structure-preserving ima-ge smoothing via region covariances [J].ACM Transactions on Graphics,2013,32(6):Article No.176.
[21]HAM B,CHO M,PONCE J.Robust image filtering using joint static and dynamic guidance [C]//2015 IEEE Conference on Computer Vision and Pattern Recognition(CVPR’15).Piscata-way,NJ:IEEE,2015:4823-4831.
[1] 王嫣然, 陈清亮, 吴俊君. 面向复杂环境的图像语义分割方法综述[J]. 计算机科学, 2019, 46(9): 36-46.
[2] 孙中锋, 王静. 用于基于方面情感分析的RCNN-BGRU-HN网络模型[J]. 计算机科学, 2019, 46(9): 223-228.
[3] 缪永伟, 李高怡, 鲍陈, 张旭东, 彭思龙. 基于卷积神经网络的图像局部风格迁移[J]. 计算机科学, 2019, 46(9): 259-264.
[4] 江泽涛, 秦嘉奇, 胡硕. 基于多路卷积神经网络的多光谱场景识别方法[J]. 计算机科学, 2019, 46(9): 265-270.
[5] 陈威, 李决龙, 邢建春, 杨启亮, 周启臻. 基于核相关滤波器和分层卷积特征的长时间目标跟踪[J]. 计算机科学, 2019, 46(9): 271-276.
[6] 倪晓军, 高雁, 李凌锋. 基于RSSI的混合滤波算法[J]. 计算机科学, 2019, 46(8): 133-137.
[7] 于洋, 李世杰, 陈亮, 刘韵婷. 基于改进YOLO v2的船舶目标检测方法[J]. 计算机科学, 2019, 46(8): 332-336.
[8] 李健鹏, 尚振宏, 刘辉. 融合多层卷积特征的相关滤波运动目标跟踪算法[J]. 计算机科学, 2019, 46(7): 252-257.
[9] 张琳娜,陈建强,陈晓玲,岑翼刚,阚世超. 面向行车视频目标实时检测的轻量级SSD网络[J]. 计算机科学, 2019, 46(7): 233-237.
[10] 刘斌,谌文江,辛迦楠. 基于四通道不可分加性小波的多聚焦图像融合[J]. 计算机科学, 2019, 46(7): 268-273.
[11] 孔繁钰, 周愉峰, 陈纲. 基于时空特征挖掘的交通流量预测方法[J]. 计算机科学, 2019, 46(7): 322-326.
[12] 陈思文, 刘玉江, 刘冬, 苏晨, 赵地, 钱林学, 张佩珩. 基于AlexNet模型和自适应对比度增强的乳腺结节超声图像分类[J]. 计算机科学, 2019, 46(6A): 146-152.
[13] 石雨鑫, 邓洪敏, 郭伟林. 基于混合卷积神经网络的静态手势识别[J]. 计算机科学, 2019, 46(6A): 165-168.
[14] 侯媛媛, 何儒汉, 李敏, 陈佳. 结合卷积神经网络多层特征融合和K-Means聚类的服装图像检索方法[J]. 计算机科学, 2019, 46(6A): 215-221.
[15] 张旭涛. 基于高斯-椒盐噪声的滤波算法[J]. 计算机科学, 2019, 46(6A): 263-265.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 孙启,金燕,何琨,徐凌轩. 用于求解混合车辆路径问题的混合进化算法[J]. 计算机科学, 2018, 45(4): 76 -82 .
[2] 戴文静, 袁家斌. 隐含子群问题的研究现状[J]. 计算机科学, 2018, 45(6): 1 -8 .
[3] 杨沛安, 武杨, 苏莉娅, 刘宝旭. 网络空间威胁情报共享技术综述[J]. 计算机科学, 2018, 45(6): 9 -18,26 .
[4] 沈夏炯, 张俊涛, 韩道军. 基于梯度提升回归树的短时交通流预测模型[J]. 计算机科学, 2018, 45(6): 222 -227,264 .
[5] 吕巨建, 赵慧民, 陈荣军, 李键红. 基于自适应稀疏邻域重构的无监督主动学习算法[J]. 计算机科学, 2018, 45(6): 251 -258 .
[6] 于阳,于洪涛,黄瑞阳. 基于多重信任的协同过滤推荐算法[J]. 计算机科学, 2018, 45(5): 108 -115 .
[7] 张劼,文敏华,林新华,孟德龙,陆豪. 基于历史模拟法的风险价值算法在GPU上的实现和优化[J]. 计算机科学, 2018, 45(5): 291 -294, 321 .
[8] 赵星宇, 丁世飞. 深度强化学习研究综述[J]. 计算机科学, 2018, 45(7): 1 -6 .
[9] 王波涛,梁伟,赵凯利,钟汉辉,张玉圻. 基于HBase的支持频繁更新与多用户并发的R树[J]. 计算机科学, 2018, 45(7): 42 -52 .
[10] 柴林鹏, 张斌. 一种抗不诚实第三方攻击的一次性公钥方案[J]. 计算机科学, 2018, 45(7): 139 -142, 185 .