计算机科学 ›› 2020, Vol. 47 ›› Issue (1): 276-280.doi: 10.11896/jsjkx.180901667

• 计算机网络 • 上一篇    下一篇

基于分布式压缩感知的无线传感器网络异常数据处理

侯明星1,亓慧1,黄斌科2   

  1. (太原师范学院计算机科学与技术系 山西 晋中030619)1;
    (西安交通大学电子与信息工程学院 西安710049)2
  • 收稿日期:2018-09-06 发布日期:2020-01-19
  • 通讯作者: 亓慧(qihui@tynu.edu.cn)
  • 基金资助:
    山西省教育厅项目(J2018159);山西省重点研发计划项目(201803D31055);山西省重点研发计划项目(201803D121088)

Data Abnormality Processing in Wireless Sensor Networks Based on Distributed Compressed Sensing

HOU Ming-xing1,QI Hui1,HUANG Bin-ke2   

  1. (Department of Computer Science and Technology,Taiyuan Normal University,Jinzhong,Shanxi 030619,China)1;
    (School of Electronics and Information Engineering,Xi’an Jiaotong University,Xi’an 710049,China)2
  • Received:2018-09-06 Published:2020-01-19
  • About author:HOU Ming-xing,born in 1990,postgraduate,is member of China Computer Federation (CCF).Her main research interests include compressed sensing,wireless sensor network and machine learning;QI Hui,born in 1981,postgraduate,associate professor,postgraduate supervisor,is member of China Computer Fe-deration (CCF).Her main research interests include machine learning and cloud computing.
  • Supported by:
    This work was supported by the Project of Educational Committee of Shanxi Province (J2018159),Key Research and Development Program of Shanxi Province (201803D31055),Key Research and Development Program of Shanxi Province (201803D121088).

摘要: 无线传感器网络的海量数据采集、传输和处理,对传感器节点的处理能力和功耗提出了严峻挑战,而且现实环境中传感器故障或者环境因素的突变会导致部分采集数据异常,而传统的数据处理方法无法对包含异常的数据进行有效的处理。针对上述问题,文中提出了两类无线传感器网络的异常数据模型,以及相应的基于分布式压缩感知的异常数据处理方法。通过协同的多个传感器进行数据压缩采样,当多个传感器采集的数据包含异常成分时,分布式压缩感知技术对数据中相同的正常分量进行一次统一重构,仅对不同的异常分量进行单独重构,从而避免了对相同数据分量的重复处理,提高了对包含异常成分数据处理的效率。另外,分布式压缩感知技术充分利用数据间的相关性,可有效减少传感器网络的数据采集量,加强其对抗异常数据的鲁棒性。对两类异常数据模型的数值仿真结果表明:相比于传统的基于单组测量值的压缩感知技术,基于分布式压缩感知技术的数据处理方法在提高异常数据重构准确率的同时,将采样数据量减少了约33%,证明了该方法的有效性。

关键词: 分布式压缩感知, 联合稀疏, 无线传感器网络, 压缩采样, 异常数据

Abstract: In wireless sensor networks,massive data acquisition,transmission and processing not only pose severe challenges to the processing ability and power consumption of sensors,but also suffer data anomalies frequently due to sensor failures or sudden changes of environmental factors,which cannot be effectively dealt with by traditional data processing methods.Regarding the problems above,this paper proposed two kinds of data abnormality models and corresponding processing method based on distri-buted compressed sensing (DSC) for wireless sensor networks.When the data collected by multiple sensors contains abnormal components,the DCS reconstructs the same normal component of data only once and the different abnormal components individual-ly,which avoids the repeated processing of the same normal component and improves the processing efficiency of the data containing abnormal components.In addition,DCS makes full use of the correlation of data,which can effectively reduce the amount of data acquisition and enhance the robustness against data anomalies.Numerical simulation results of two kinds of data abnormality models show that compared with the traditional compressed sensing based on single set of measurement,the data processing method based on DCS improves the accuracy of abnormal data reconstruction and reduces the amount of data by about 33%,which proves the effectiveness of the proposed method.

Key words: Compressed sampling, Data abnormality, Distributed compressed sensing, Joint sparsity, Wireless sensor networks

中图分类号: 

  • TP393
[1]KIMURA N,LATIFI S.A Survey on Data Compression in Wireless Sensor Networks[C]∥ International Conference on Information Technology Coding and Computing.Las Vegas:IEEE,2005:8-13.
[2]CANDÉS E J.Compressive Sampling[C]∥ Proceedings of the International Congress of Mathematicians.Madrid,Spain,2006:1433-1452.
[3]CHAN W L,MORAVEC M L,BARANIUK R G,et al.Tera-hertz Imaging with Compressed Sensing and Phase Retrieval[J].Optics letters,2008,33(9):974-976.
[4]LUSTIG M,DONOHO D L,SANTOS J M,et al.Compressed Sensing MRI[J].IEEE Signal Processing Magazine,2008,25(2):72-82.
[5]BERGER C R,WANG Z,HUANG J,et al.Application of Compressive Sensing to Sparse Channel Estimation[J].IEEE Communications Magazine,2010,48(11):164-174.
[6]BARON D,DUARTE M F,WAKIN M B,et al.Distributed Compressive Sensing[J].arXiv:0901.3403.
[7]CARDOZO A,YAMIN A,XAVIER L,et al.An Architecture Proposal to Distributed Sensing in Internet of Things[C]∥Instrumentation Systems,Circuits and Transducers (INSCIT).Belo Horizonte:IEEE,2016:67-72.
[8]LI B,GAO F,LIU X,et al.Improved Distributed Compressed Sensing for Smooth Signals in Wireless Sensor Networks[C]∥ 2016 International Conference on Computer,Information and Telecommunication Systems (CITS).Kunming,China:IEEE,2016:1-5.
[9]MASOUM A,MERATNIA N,HAVINGA P J,et al.Compressive Sensing Based Data Collection in Wireless Sensor Networks[C]∥ 2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI).Daegu,South Korea:IEEE,,2017:442-447.
[10]AZARNIA G,TINATI M A,REZAII T Y,et al.Cooperative and Distributed Algorithm for Compressed Sensing Recovery in WSNs[J].IET Signal Processing,2017,12(3):346-357.
[11]WIMALAJEEWA T,VARSHNEY P K.Robust Detection of Random Events with Spatially Correlated Data in Wireless Sen- sor Networks via Distributed Compressive Sensing[C]∥2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).Curacao,Netherlands Antilles:IEEE,2017:1-5.
[12]CHENG Y B,SI J J,HOU X L.Hierarchical Distributed Compressed Sensing for Wireless Sensor Network[J].Journal of Electronics & Information Technology,2017,39(3):539-545.
[13]LUO C,WU F,SUN J,et al.Efficient Measurement Generation and Pervasive Sparsity for Compressive Data[J].IEEE Transactions on Wireless Communications,2010,9(12):3728-3738.
[14]WANG J,TANG S,YIN B,et al.Data Gathering in Wireless Sensor Networks through Intelligent Compressive Sensing[C]∥ Proceedings of the IEEE International Conference on Compute Communications (INFOCOM).Orlando,2012:603-611.
[15]CHEN S S,DONOHO D L,SAUNDERS M A,et al.Atomic Decomposition by Basis Pursuit[J].SIAM Review,2001,43(1):129-159.
[16]CANDES E J,WAKIN M B,BOYD S P,et al.Enhancing Sparsity by Reweighted 1 Minimization[J].Journal of Fourier Ana-lysis and Applications,2008,14(5/6):877-905.
[17]TROPP J A,GIBERT A C.Signal Recovery from Random Measurements via Orthogonal Matching Pursuit[J].IEEE Transactions on Information Theory,2007,53(12):4655-4666.
[18]DAI W,MILENKOVIC O.Subspace Pursuit for Compressive Sensing Signal Reconstruction[J].IEEE Transactions on Information Theory,2009,55(5):2230-2249.
[1] 范星泽, 禹梅.
改进灰狼算法的无线传感器网络覆盖优化
Coverage Optimization of WSN Based on Improved Grey Wolf Optimizer
计算机科学, 2022, 49(6A): 628-631. https://doi.org/10.11896/jsjkx.210500037
[2] 王国武, 陈元琰.
基于跳数修正和遗传模拟退火优化DV-Hop定位算法
Improvement of DV-Hop Location Algorithm Based on Hop Correction and Genetic Simulated Annealing Algorithm
计算机科学, 2021, 48(6A): 313-316. https://doi.org/10.11896/jsjkx.201000101
[3] 王栋, 王虎, 姜迁里.
基于6LoWPAN的低功耗长距离海洋环境监测系统
Low Power Long Distance Marine Environment Monitoring System Based on 6LoWPAN
计算机科学, 2020, 47(6A): 596-598. https://doi.org/10.11896/JsJkx.190900194
[4] 卢爱红, 郭艳, 李宁, 王萌, 刘杰.
基于原子范数最小化的二维稀疏阵列波达角估计算法
Direction-of-arrival Estimation with Two-dimensional Sparse Array Based on Atomic NormMinimization
计算机科学, 2020, 47(5): 271-276. https://doi.org/10.11896/jsjkx.191200139
[5] 刘宁宁,樊建席,林政宽.
基于地址空间的树型网络地址分配
Address Assignment Algorithm for Tree Network Based on Address Space
计算机科学, 2020, 47(2): 239-244. https://doi.org/10.11896/jsjkx.190400130
[6] 苏凡军,杜可怡.
WSNs中基于信任度的节能机会路由算法
Trust Based Energy Efficient Opportunistic Routing Algorithm in Wireless Sensor Networks
计算机科学, 2020, 47(2): 300-305. https://doi.org/10.11896/jsjkx.190100172
[7] 周文祥, 乔学工.
基于能量优化的无线传感器网络任播路由算法
Anycast Routing Algorithm for Wireless Sensor Networks Based on Energy Optimization
计算机科学, 2020, 47(12): 291-295. https://doi.org/10.11896/jsjkx.190900069
[8] 李正阳, 陶洋, 周远林, 杨柳.
基于能量获取的能耗均衡多跳分簇路由协议
Energy-balanced Multi-hop Cluster Routing Protocol Based on Energy Harvesting
计算机科学, 2020, 47(11A): 296-302. https://doi.org/10.11896/jsjkx.200300002
[9] 徐鹤, 吴昊, 李鹏.
面向物联网的时空数据处理算法设计
Design of Temporal-spatial Data Processing Algorithm for IoT
计算机科学, 2020, 47(11): 310-315. https://doi.org/10.11896/jsjkx.200400045
[10] 王改云, 王磊杨, 路皓翔.
基于混合群智能算法优化的RSSI质心定位算法
RSSI-based Centroid Localization Algorithm Optimized by Hybrid Swarm Intelligence Algorithm
计算机科学, 2019, 46(9): 125-129. https://doi.org/10.11896/j.issn.1002-137X.2019.09.017
[11] 刘静, 赖英旭, 杨胜志, Lina Xu.
一种面向WSN的双向身份认证协议及串空间模型
Bilateral Authentication Protocol for WSN and Certification by Strand Space Model
计算机科学, 2019, 46(9): 169-175. https://doi.org/10.11896/j.issn.1002-137X.2019.09.024
[12] 王静, 仇晓鹤.
基于分簇和融合补偿策略的多维标度定位算法
Advanced MDS-MAP Localization Algorithm with Clustering and Fusion Compensation Strategy
计算机科学, 2019, 46(8): 145-151. https://doi.org/10.11896/j.issn.1002-137X.2019.08.024
[13] 叶娟, 陈元琰, 王明, 尼迎波.
多通信半径与角度修正的凸规划改进定位算法
Optimized Convex Localization Algorithm Using Multiple Communication Radius and Angle Correction
计算机科学, 2019, 46(6A): 317-320.
[14] 梁平元, 李杰, 彭娇, 王会.
基于协作MIMO的UWSN三维动态分簇路由算法研究
Research on 3D Dynamic Clustering Routing Algorithm Based on Cooperative MIMO for UWSN
计算机科学, 2019, 46(6A): 336-342.
[15] 李秀琴, 王天荆, 白光伟, 沈航.
基于压缩感知的两阶段多目标定位算法
Two-phase Multi-target Localization Algorithm Based on Compressed Sensing
计算机科学, 2019, 46(5): 50-56. https://doi.org/10.11896/j.issn.1002-137X.2019.05.007
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!