计算机科学 ›› 2020, Vol. 47 ›› Issue (1): 165-169.doi: 10.11896/jsjkx.181202329

• 计算机图形学&多媒体 • 上一篇    下一篇

基于无偏线性最优估计的PET图像重建

王宏霞,徐英婕,赵云波,张文安   

  1. (浙江工业大学信息工程学院 杭州310023)
  • 收稿日期:2018-12-16 发布日期:2020-01-19
  • 通讯作者: 王宏霞(whx1123@zjut.edu.cn)
  • 基金资助:
    浙江省自然科学基金(LY18F030022,LR16F030005);国家自然科学基金(61673350)

PET Image Reconstruction Based on Unbiased Linear Optimal Estimation

WANG Hong-xia,XU Ying-jie,ZHAO Yun-bo,ZHANG Wen-an   

  1. (School of Information Engineering,Zhejiang University of Technology,Hangzhou 310023,China)
  • Received:2018-12-16 Published:2020-01-19
  • About author:WANG Hong-xia,born in 1980,associa-te professor,is member of China Computer Federation(CCF).Her main research interests include control for stochastic systems,estimation for stochastic systems,and images reconstruction.
  • Supported by:
    This work was supported by the National Natural Science Foundation of Zhejiang Province (LY18F030022,LR16F030005) and National Natural Science Foundation of China (61673350).

摘要: 正电子发射断层成像(Positron Emission Tomography,PET)技术在实体肿瘤的定性诊断和病灶转移的检查中具有举足轻重的作用,因此非常有必要提高PET的成像质量。然而,已有的迭代重建算法基本上都严重依赖于PET的线性模型。考虑到探测器效率、探测系统的几何尺寸、生物组织对光子的衰减以及散射效应等诸多物理因素,该模型无法真实地刻画示踪剂与正弦图数据之间的复杂关系。文中首先提出了一种新的观测模型,通过在原来的线性模型中引入未知输入项来刻画示踪剂与正弦图数据之间的关系。该项由两部分组成:1)系数矩阵,用于进一步描述投影的线性部分;2)未知输入,用于刻画示踪剂的浓度分布和投影数据之间的一些非线性关系。在此新模型的基础上,PET图像重构问题被转化成一个线性无偏的最优估计问题。然后,给出了具有待定增益的线性迭代估计模型,通过将正弦数据向未知输入项的系数矩阵的零空间零域上进行投影,消除了未知输入给线性最优估计带来的困难,借助卡尔曼滤波的设计思路,推导出了前述的估计增益。基于此估计模型,提出了一种基于无偏线性最优估计的重建算法。最后,通过仿真实验,将所提重建算法与期望极大估计算法(Expectation-Maximization reconstruction,EM)、核化的EM算法(Kernel method,KEM)以及基于标准卡尔曼滤波(Kalman Filtering method,KF)的重建算法从均方误差(Mean Square Error,MSE)、信噪比(Signal-Noise-Rate,SNR)两个方面进行了比较。实验结果表明:与其他3种算法相比,所提算法重建的图像具有更大的信噪比、更小的均方误差,视觉上更加清晰,更好地重建了肿瘤的形状和尺寸,因此具有更好的重构质量。

关键词: 卡尔曼滤波, 未知输入, 无偏估计, 最优估计

Abstract: Positron Emission Tomography (PET) plays an important role in qualitative diagnosis and metastasis of tumors.Therefore,it is very necessary to improve imaging quality of PET.However,most of the existing reconstruction algorithms rely heavily on the linear model of PET.Considering that PET is affected by many physical factors,such as detector efficiency,geometric size of detection system,attenuation of gamma photons by biological tissues and scattering effects,the linear model cannot match the nonlinear relationship between tracer concentration and sinogram.This paper proposed a new observation model to characterize the complicated relationship between the tracer concentration and sinogram by introducing an unknown input term.This term consists of two parts.One is a coefficient matrix,which further describes the linear part of the projection; the other is an unknown input,which characterizes the nonlinear relation ship between the tracer concentration and the sinogram.Based on the new model,the PET image reconstruction is reformulated as a linear unbiased optimal estimation.Then,a linear and recursive relation with an unknown estimation gain is introduced,the difficulty induced by the unknown input term is solved by projecting sinogram onto the null space of the coefficient matrix of unknown input.Based on the design idea of Kalman filter,the estimation gain is derived.Finally,the Expectation-Maximization reconstruction (EM),the Kernel-based EM algorithm (KEM) and the Kalman Filtering method (KF) are compared with the proposed algorithm by calculating Mean Square Error (MSE) and Signal-Noise-Rate (SNR).The experiment results show that the proposed algorithm has larger SNR,smaller MSE as well as more clear reconstruct image,and reconstructs the size and shape of the tumor better than the others.Hence,the proposed algorithm of reconstruction has better quality to the others.

Key words: Kalman filter, Optimal estimation, Unbiased estimation, Unknown input

中图分类号: 

  • TP13
[1]HAACKE E M,CHENG N Y C,HOUSE M J,et al.Imaging iron stores in the brain using magnetic resonance imaging[J].Magnetic Resonance Imaging,2005,23(1):1-25.
[2]KUMAR R,DHANPATHI H,BASU S,et al.Oncologic PET tracers beyond [sup 18F]FDG and the novel quantitative approaches in PET imaging[J].The Quarterly Journal of Nuclear Medicine and Molecular Imaging,2008,52(1):50-65.
[3]BRENNER D J,HALL E J.Computed tomography—an increa- sing source of radiation exposure[J].New England Journal of Medicine,2007,357(22):2277-2284.
[4]ZENG G L.Medical image reconstruction:a conce-ptual tutorial[M].New York:Springer,2010.
[5]ALESSIO A,KINAHAN P.PET image reconstruction[J].Nuclear Medicine,2006,1:1-22.
[6]QI J,LEAHY R M.Iterative reconstruction techniques in emission computed tomography[J].Physics in Medicine & Biology,2006,51(15):R541-R578.
[7]WANG C X,SNYDER W E,BILBRO G,et al.Performance evaluation of filtered backprojection reconstruction and iterative reconstruction methods for PET images[J].Computers in Biologyand Medicine,1998,28(1):13-25.
[8]YAVUZ M,FESSLER J A.New Statistical models for randomsprecorrected PET scans[J].Lecture Notes in Computer Science,1997,1230:190-203.
[9]WANG H,CHEN X,YU L.PET reconstruction based on optimal linear stochastic filtering[C]∥Proceedings of the 33rd Chinese Control Conference.IEEE,China,2014:5387-5391.
[10]YU F,LIU H,SHI P.Pet image reconstruction based on particle filter framework[C]∥Proceedings of 2012 IEEE-EMBS International Conference on Biomedical and Health Informatics.IEEE,China,2012:851-853.
[11]WANG H,CHEN X,YU L.PET Image Reconstruction Based on a Constrained Filter[J].IFAC Proceedings Volumes,2014,47(3):5503-5507.
[12]TIAN Y,LIU H,SHI P.State space strategies for estimation of activity map in pet imaging[C]∥International Workshop on Medical Imaging and Virtual Reality.Springer,Berlin,Heidelberg,2004:46-53.
[13]WANG G,QI J.PET image reconstruction using kernel method[J].IEEE Transactions on Medical Imaging,2015,34(1):61-71.
[14]GONG K,CHENG-LIAO J,WANG G,et al.Direct Patlak reconstruction from dynamic PET data using kernel method with MRI information based on structural similarity[J].IEEE Transactions on Medical Imaging,2018,37(4):955-965.
[15]HUTCHCROFT W,WANG G,CHEN K T,et al.Anatomically-aided PET reconstruction using the kernel method[J].Phy-sics in Medicine & Biology,2016,61(18):6668-6683.
[16]EHRHARDT M J,MARKIEWICZ P,LILJEROTH M,et al.PET reconstruction with an anatomical MRI prior using parallel level sets[J].IEEE Transactions on Medical Imaging,2016,35(9):2189-2199.
[17]MEHRANIAN A,ZAIDI H,READER A J.MR-guided joint reconstruction of activity and attenuation in brain PET-MR[J].NeuroImage,2017,162:276-288.
[18]OLLINGER J M,FESSLER J A.Positron-emission tomography[J].IEEE Signal Processing Magazine,1997,14(1):43-55.
[19]WANG H,XU Y,ZHAO Y,et al.A novel static PET image reconstruction method[C]∥Chinese Automation Congress (CAC),2017.IEEE,China,2017:4537-4541.
[20]LEAHY R M,QI J.Statistical approaches in quantitative positron emission tomography[J].Statistics and Computing,2000,10(2):147-165.
[21]GUNN R N,GUNN S R,TURKHEIMER F E,et al.Tracer kinetic modeling via basis pursuit[J].Brain Imaging Using PET,2002,151-121.
[1] 史殿习, 刘聪, 佘馥江, 张拥军.
GPS拒止环境下基于定位置信度的多无人机协同定位方法
Cooperation Localization Method Based on Location Confidence of Multi-UAV in GPS-deniedEnvironment
计算机科学, 2022, 49(4): 302-311. https://doi.org/10.11896/jsjkx.210200106
[2] 高枫越, 王琰, 朱铁兰.
有适应力的分布式状态估计方法
Resilient Distributed State Estimation Algorithm
计算机科学, 2021, 48(5): 308-312. https://doi.org/10.11896/jsjkx.200300117
[3] 王秉洲, 王慧斌, 沈洁, 张丽丽.
基于自适应渐消UKF的FastSLAM算法
FastSLAM Algorithm Based on Adaptive Fading Unscented Kalman Filter
计算机科学, 2020, 47(9): 213-218. https://doi.org/10.11896/jsjkx.190700186
[4] 冯安琪, 钱丽萍, 欧阳金源, 吴远.
车联网络通过两级量化自适应卡尔曼滤波实现车辆状态预测
Vehicular Networking Enabled Vehicle State Prediction with Two-level Quantized AdaptiveKalman Filtering
计算机科学, 2020, 47(5): 230-235. https://doi.org/10.11896/jsjkx.190300155
[5] 张良成, 王运锋.
动态自适应的多雷达信息加权融合方法
Dynamic Adaptive Multi-radar Tracks Weighted Fusion Method
计算机科学, 2020, 47(11A): 321-326. https://doi.org/10.11896/jsjkx.2004000145
[6] 黄婷婷, 冯锋.
无线传感器网络异构数据融合模型优化研究
Study on Optimization of Heterogeneous Data Fusion Model in Wireless Sensor Network
计算机科学, 2020, 47(11A): 339-344. https://doi.org/10.11896/jsjkx.200100109
[7] 冯安琪, 钱丽萍, 黄玉蘋, 吴远.
RFID环境下基于自适应卡尔曼滤波的高速移动车辆速度预测
RFID Data-driven Vehicle Speed Prediction Using Adaptive Kalman Filter
计算机科学, 2019, 46(4): 100-105. https://doi.org/10.11896/j.issn.1002-137X.2019.04.016
[8] 赵倩倩,吕敏,许胤龙.
基于两种子结构感知的社交网络Graphlets采样估计算法
Estimating Graphlets via Two Common Substructures Aware Sampling in Social Networks
计算机科学, 2019, 46(3): 314-320. https://doi.org/10.11896/j.issn.1002-137X.2019.03.046
[9] 马林宏, 陈廷伟, 郝明, 张雷.
多线路信息融合的公交车行程时间预测算法
Bus Travel Time Prediction Algorithm Based on Multi-line Information Fusion
计算机科学, 2019, 46(11): 222-227. https://doi.org/10.11896/jsjkx.180901764
[10] 李广敬, 鲍泓, 徐成.
一种基于3D激光雷达的实时道路边缘提取算法
Real-time Road Edge Extraction Algorithm Based on 3D-Lidar
计算机科学, 2018, 45(9): 294-298. https://doi.org/10.11896/j.issn.1002-137X.2018.09.049
[11] 赵广辉, 卓松, 徐晓龙.
基于卡尔曼滤波的多目标跟踪方法
Multi-object Tracking Algorithm Based on Kalman Filter
计算机科学, 2018, 45(8): 253-257. https://doi.org/10.11896/j.issn.1002-137X.2018.08.045
[12] 童晓红,唐超.
基于次优区间卡尔曼滤波的机器鱼跟踪方法
Robotic Fish Tracking Method Based on Suboptimal Interval Kalman Filter
计算机科学, 2018, 45(2): 114-120. https://doi.org/10.11896/j.issn.1002-137X.2018.02.020
[13] 刘沛丰,王坚.
一种基于抗差EKF的移动机器人定位技术
Algorithm of SLAM Based on Robust EKF
计算机科学, 2017, 44(Z6): 115-118. https://doi.org/10.11896/j.issn.1002-137X.2017.6A.025
[14] 袁大龙,纪庆革.
协同运动状态估计的多目标跟踪算法
Multiple Object Tracking Algorithm via Collaborative Motion Status Estimation
计算机科学, 2017, 44(Z11): 154-159. https://doi.org/10.11896/j.issn.1002-137X.2017.11A.032
[15] 冯少江,徐泽宇,石明全,王晓东.
基于改进扩展卡尔曼滤波的姿态解算算法研究
Research on Attitude Algorithm Based on Improved Extended Calman Filter
计算机科学, 2017, 44(9): 227-229. https://doi.org/10.11896/j.issn.1002-137X.2017.09.042
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!