计算机科学 ›› 2020, Vol. 47 ›› Issue (3): 273-280.doi: 10.11896/jsjkx.190100238

所属专题: 区块链技术

• 计算机网络 • 上一篇    下一篇

基于跳跃Hash和异步共识组的区块链动态分片模型

潘吉飞,黄德才   

  1. (浙江工业大学计算机科学与技术学院 杭州310023)
  • 收稿日期:2019-01-29 出版日期:2020-03-15 发布日期:2020-03-30
  • 通讯作者: 黄德才(hdc@zjut.edu.cn)
  • 基金资助:
    水利部公益性行业科研专项基金(201401044);浙江省基础公益研究计划(GG19E090005)

Blockchain Dynamic Sharding Model Based on Jump Hash and Asynchronous Consensus Group

PAN Ji-fei,HUANG De-cai   

  1. (College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China)
  • Received:2019-01-29 Online:2020-03-15 Published:2020-03-30
  • About author:PAN Ji-fei,born in 1993,postgraduate.His main research interest include data mining and artificial intelligence. HUANG De-cai,born in 1958,Ph.D,professor,doctoral spervisor.His main research include database,data mining,artificial intelligence and so on.
  • Supported by:
    This work was supported by Ministry of Water Resources Public Welfare Industry Research Special Fund (201401044) and Zhejiang Basic Public Welfare Research Program (GG19E090005).

摘要: 区块链系统的实现方案普遍存在性能和容量上的缺陷,使其无法取得更广泛的普及和应用。分片被视为最有可能解决区块链瓶颈的技术,然而目前主流的实现方案普遍存在牺牲去中心化或者安全性来提升性能的问题。基于现有分片技术的研究,文中提出了基于跳跃Hash和动态权重的分片构建算法,该算法满足高效性、公平性、自适应性等特点,网络分片效率对比以太坊提升了8%,分片数量动态增减时节点迁移的工作量对比以太坊降低了25%;同时引入了异步共识组机制,提升了分片的交易安全性,能够有效处理跨分片交易。理论分析和实验证明,基于跳跃Hash和异步共识组的区块链动态分片模型的最大交易性能可达5000笔每秒。

关键词: 动态权重, 分片, 区块链, 跳跃Hash, 异步共识组

Abstract: The current implementation of blockchain systems generally suffer from performance and capacity deficiencies,making it impossible to achieve deeper popularity and wider application.Sharding is considered as the most likely technology to solve the blockchain bottleneck.However,at present,the mainstream sharding schemes generally suffer from the problem of sacrificing decentralization or security to improve performance.Based on the existing sharding technology,this paper proposed the jump Hash wight asynchronous consensus group scheme,which builds shards based on jump hash and dynamic weights,to improve the efficiency and rationality of shards creation.The algorithm satisfies the characteristics of high efficiency,fairness,and adaptability.The network fragmentation efficiency is improved by 8% compared with Ethereum.The workload of node migration is reduced by 25% compared with Ethereum.The asynchronous consensus group mechanism is introduced to improve the transaction security of sharding and effectively handle cross-shard transactions.Through theoretical analysis and experiments,the maximum transaction performance of blockchain dynamic sharding model based on jump Hash and asynchronous consensus group can reach 5000 transactions per second.

Key words: Asynchronous consensus group, Blockchain, Dynamic weight, Jump Hash, Sharding

中图分类号: 

  • TP315
[1]Satoshi NAKAMOTO.Bitcoin:A Peer-to-Peer Electronic Cash System [EB/OL].https://bitcoin.org/bitcoin.pdf.
[2]BONNEAU J,MILLER A,CLARK J,et al.SoK:Research Perspectives and Challenges for Bitcoin and Cryptocurrencies[C]∥2015 IEEE Symposium on Security and Privacy (SP).IEEE Computer Society,2015.
[3]HE P,YU G,ZANG Y F,et al.Survey on Blockchain Technology and Its Application Prospect[J].Computer Science,2017,44(4):1-7.
[4]EOS.EOSIO Technical White Paper v2[EB/OL].(2018-3-16).https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md.
[5]PAN C,LIU Z Q,LIU Z,et al.Research on Scalability of Blockchain Technology:Problems and Methods[J].Journal of Computer Research and Development,2018,5(10):2099-2010.
[6]CHIKHALE K,SHRAWANKAR U.Hybrid Multi-level Cache Management Policy[C]∥2014 Fourth International Conference on Communication Systems and Network Technologies.2014:1119-1123.
[7]Julianbrowne.Brewer’s CAP Theorem [EB/OL].http://www.julianbrowne.com/article/brewers-cap-theorem.
[8]LUU L,NARAYANAN V,ZHENG C D,et al.A Secure Sharding Protocol For Open Blockchains [C]∥Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security(CCS’16).2016:17-30.
[9]KARGER D,LEHMAN E,LEIGHTON T,et al.Consistent hashing and random trees:distributed caching protocols for relieving hot spots on the World Wide Web[C]∥Proceedings of the Twenty-ninth Annual ACM Symposium on Theory of Computing.New York,USA,1997:654-663.
[10]LEE B,JEONG Y,SONG H,et al.A scalable and highly avai- lable network management architecture on consistent hashing[C]∥IEEE Globecom.2010.
[11]CASTRO M,LISKOV B.Practical Byzantine Fault Tolerance and Proactive Recovery[J].ACM Transactions on Computer Systems Association for Computing Machinery 1999,20(4):398-461.
[12]PAUL J,TOOSKA D,REZA M,et al.Parizi,Kim-Kwang Raymond Choo,A systematic literature review of blockchain cyber security[J].Digital Communications and Networks,2018,34(6):154-168.
[13]WANG M M,WU Q H,QIN B,et al.Lightweight and Manageable Digital Evidence Preservation System on Bitcoin[J].Journal of Computer Science & Technology,2018,33(3):568-586.
[14]Vitalik.EthereumSharding[EB/OL].https://github.com/ethe-reum/sharding/blob/develop/docs/doc.md.
[15]Rchain.The Rchain Technical Whitepaper [EB/OL].(2017-8-29).https://www.chainwhy.com/upload/default/20180620/c982b5a83e4fde627ca2dda33f3263bc.pdf.
[16]ZILLIQA.The ZILLIQA Technical Whitepaper[EB/OL].ht- tps://docs.zilliqa.com/whitepaper.pdf,2017-08-10.
[17]WANG J P,WANG H.Monoxide:Scale Out Blockchain with Asynchronized Consensus Zones[C]∥Networked Systems Design and Implementation.Boston MA,USA,2019.
[18]LAMPING J,VEACH E.A Fast,Minimal Memory,Consistent Hash Algorithm[J].arXiv:1406.2294,2014.
[19]Mitclub.MIT whitepaper.pdf[EB/OL].https://github.com/Mitclub/Documents/ blob/master/whitepaper.pdf.
[20]AL-BASSAM M,SONNINO A,BANO S,et al.Chainspace:A Sharded Smart Contracts Platform[C]∥Network and Distributed System Security Symposium(NDSS).San Diego:IEEE Press,2018.
[21]EYAL I,GENCER A E,SIRER G,et al. Bitcoinng:A scalable blockchain protocol∥13th USENIX Symposium on Networked Systems Design and Implementation(NSDI 2016).Santa Clara,CA,USA,2016.
[22]SHAO Q F,JIN C Q,et al.Blockchain:Architecture and Re- search Progress[J].Chinese Journal of Computers,2017,41(5):971-988.
[23]YUAN Y,NI X C,ZENG S,et al.Blockchain Consensus Algorithms:The State of the Art and Future Trends[J].Acta Automatica Sinica,2018,44(11):2011-2022.
[24]YIHUA D,JAMES W,PRADIP K,et al.Scalable practical byzantine fault tolerance with short-lived signature schemes[C]∥Proceedings of the 28th Annual International Conference on Computer Science and Software Engineering(CASCON’18).2018:245-256.
[25]JAKOBSSON M,LEIGHTON T, MICALI S.Fractal Merkle Tree Representation and Traversal[C]∥Topics in Cryptology-CT-RSA.2003:314-326.
[26]MIN X P,LI Q Z,KONG L J,et al.Permissioned Blockchain Dynamic Consensus Mechanism Based Multi-Centers[J].Chinese Journal of Computers,2018,41(5):1005-1020.
[1] 王子凯, 朱健, 张伯钧, 胡凯.
区块链与智能合约并行方法研究与实现
Research and Implementation of Parallel Method in Blockchain and Smart Contract
计算机科学, 2022, 49(9): 312-317. https://doi.org/10.11896/jsjkx.210800102
[2] 周航, 姜河, 赵琰, 解相朋.
适用于各单元共识交易的电力区块链系统优化调度研究
Study on Optimal Scheduling of Power Blockchain System for Consensus Transaction ofEach Unit
计算机科学, 2022, 49(6A): 771-776. https://doi.org/10.11896/jsjkx.210600241
[3] 傅丽玉, 陆歌皓, 吴义明, 罗娅玲.
区块链技术的研究及其发展综述
Overview of Research and Development of Blockchain Technology
计算机科学, 2022, 49(6A): 447-461. https://doi.org/10.11896/jsjkx.210600214
[4] 高健博, 张家硕, 李青山, 陈钟.
RegLang:一种面向监管的智能合约编程语言
RegLang:A Smart Contract Programming Language for Regulation
计算机科学, 2022, 49(6A): 462-468. https://doi.org/10.11896/jsjkx.210700016
[5] 毛典辉, 黄晖煜, 赵爽.
符合监管合规性的自动合成新闻检测方法研究
Study on Automatic Synthetic News Detection Method Complying with Regulatory Compliance
计算机科学, 2022, 49(6A): 523-530. https://doi.org/10.11896/jsjkx.210300083
[6] 李博, 向海昀, 张宇翔, 廖浩德.
面向食品溯源场景的PBFT优化算法应用研究
Application Research of PBFT Optimization Algorithm for Food Traceability Scenarios
计算机科学, 2022, 49(6A): 723-728. https://doi.org/10.11896/jsjkx.210800018
[7] 王思明, 谭北海, 余荣.
面向6G可信可靠智能的区块链分片与激励机制
Blockchain Sharding and Incentive Mechanism for 6G Dependable Intelligence
计算机科学, 2022, 49(6): 32-38. https://doi.org/10.11896/jsjkx.220400004
[8] 孙浩, 毛瀚宇, 张岩峰, 于戈, 徐石成, 何光宇.
区块链跨链技术发展及应用
Development and Application of Blockchain Cross-chain Technology
计算机科学, 2022, 49(5): 287-295. https://doi.org/10.11896/jsjkx.210800132
[9] 阳真, 黄松, 郑长友.
基于区块链与改进CP-ABE的众测知识产权保护技术研究
Study on Crowdsourced Testing Intellectual Property Protection Technology Based on Blockchain and Improved CP-ABE
计算机科学, 2022, 49(5): 325-332. https://doi.org/10.11896/jsjkx.210900075
[10] 任畅, 赵洪, 蒋华.
一种量子安全拜占庭容错共识机制
Quantum Secured-Byzantine Fault Tolerance Blockchain Consensus Mechanism
计算机科学, 2022, 49(5): 333-340. https://doi.org/10.11896/jsjkx.210400154
[11] 冯了了, 丁滟, 刘坤林, 马科林, 常俊胜.
区块链BFT共识算法研究进展
Research Advance on BFT Consensus Algorithms
计算机科学, 2022, 49(4): 329-339. https://doi.org/10.11896/jsjkx.210700011
[12] 王鑫, 周泽宝, 余芸, 陈禹旭, 任昊文, 蒋一波, 孙凌云.
一种面向电能量数据的联邦学习可靠性激励机制
Reliable Incentive Mechanism for Federated Learning of Electric Metering Data
计算机科学, 2022, 49(3): 31-38. https://doi.org/10.11896/jsjkx.210700195
[13] 张潆藜, 马佳利, 刘子昂, 刘新, 周睿.
以太坊Solidity智能合约漏洞检测方法综述
Overview of Vulnerability Detection Methods for Ethereum Solidity Smart Contracts
计算机科学, 2022, 49(3): 52-61. https://doi.org/10.11896/jsjkx.210700004
[14] 杨昕宇, 彭长根, 杨辉, 丁红发.
基于演化博弈的理性拜占庭容错共识算法
Rational PBFT Consensus Algorithm with Evolutionary Game
计算机科学, 2022, 49(3): 360-370. https://doi.org/10.11896/jsjkx.210900110
[15] 范家幸, 王志伟.
基于门限环签名的分级匿名表决方案
Hierarchical Anonymous Voting Scheme Based on Threshold Ring Signature
计算机科学, 2022, 49(1): 321-327. https://doi.org/10.11896/jsjkx.201000032
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!