计算机科学 ›› 2020, Vol. 47 ›› Issue (5): 217-224.doi: 10.11896/jsjkx.190400039

• 人工智能 • 上一篇    下一篇

信息共享模型和组外贪心策略的郊狼优化算法

张新明1,2, 李双倩1, 刘艳1,2, 毛文涛1,2, 刘尚旺1, 刘国奇1   

  1. 1 河南师范大学计算机与信息工程学院 河南 新乡453007
    2 智慧商务与物联网技术河南省工程实验室 河南 新乡453007
  • 收稿日期:2019-04-07 出版日期:2020-05-15 发布日期:2020-05-19
  • 通讯作者: 张新明(xinmingzhang@126.com)
  • 基金资助:
    国家自然科学基金(U1704158);河南省高等学校重点科研项目(19A520026)

Coyote Optimization Algorithm Based on Information Sharing and Static Greed Selection

ZHANG Xin-ming1,2, LI Shuang-qian1, LIU Yan1,2, MAO Wen-tao1,2, LIU Shang-wang1, LIU Guo-qi1   

  1. 1 College of Computer and Information Engineering,Henan Normal University,Xinxiang,Henan 453007,China
    2 Engineering Lab of Intelligence Business and Internet of Things of Henan Province,Xinxiang,Henan 453007,China
  • Received:2019-04-07 Online:2020-05-15 Published:2020-05-19
  • About author:ZHANG Xin-ming,born in 1963,professor,master's supervisor,is a member of China Computer Federation.His main research interests include intelligent optimization algorithm and image segmentation
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (U1704158) and Key Research Projects of Higher Education Institutions of Henan Province,China (19A520026).

摘要: 郊狼优化算法(Coyote Optimization Algorithm,COA)是最近提出的一种新颖群智能优化算法,具有较大的应用潜力,但存在运行时间长和搜索能力不足等问题。因此,文中提出了一种改进的COA,即基于信息共享和组外(静态)贪心的COA(COA based on Information sharing and Static greed selection,ISCOA)。首先,构建一种新型的信息共享模型,用于子群所有郊狼的成长,在郊狼成长前期,共享信息差异性大,以增加种群的多样性,在效狼成长后期,共享信息差异性小,以强化开采能力;其次,构建一种新的组内成长方式,即前期主要采用信息共享模型的成长方式,以郊狼的信息共享为主强化探索能力,后期主要采用原算法的成长方式,以alpha狼和文化趋势的引导为主强化开采能力;最后,将原算法的组内贪心算法改成组外贪心算法,即静态贪心算法,以便提高算法的稳定性和实现目标函数计算等的并行处理,提高运行速度。大量复杂的CEC2017函数优化实验结果表明,与COA相比,ISCOA在29个10维和30维函数上分别获得了23和24个函数的优势,其平均运行时间分别是COA的86.3%和85.7%,降低了运行时间;与7个最先进的算法相比,ISCOA在10维和30维函数上的平均排名分别是1.48和1.69,分别获得了17和18个第一,具有更好的优化效果。运用于实际工程问题的实验结果表明,ISCOA得到了最好的结果,证明了ISCOA有更强的搜索能力和竞争性以及更好的应用前景。

关键词: 郊狼优化算法, 开采能力, 群智能优化算法, 贪心算法, 探索能力

Abstract: Coyote Optimization Algorithm (COA) is a novel intelligent optimization algorithm recently proposed and has great application potential,but it has some problems such as long running time and insufficient search ability.This paper proposes an improved COA,namely COA based on Information sharing and Static greed selection (ISCOA).Firstly,a new information sharing model is constructed and applied to the growth of all coyotes in the subgroup,the difference of the sharing information is larger in the early growth so as to increase the population diversity,and the one is smaller in the late growth to be beneficial to exploitation.Secondly,a new intra-group growth mode is constructed,that is to say,a new growth way is adopted in the early stage,mainly based on the information sharing model,to strengthen the growth process to improve the exploration ability,and the growth method of the original algorithm is kept in the later stage,mainly based on the guidance of the alpha wolf and the cultural trend,to strengthen the exploiting ability.Finally,the intragroup greedy algorithm of the original algorithm is changed into a sta-tic greedy algorithm to improve the stability of the algorithm,realize the parallel calculation of the objective function,and improve the running speed.A large number of experiment results on the complex functions from CEC2017 test set show that,compared with COA,ISCOA obtains the advantage of 23 and 24 of the 29 10-dimensional and 30-dimensional functions respectively,and its average running time is 86.3% and 85.7% of COA's on the 10-dimensional and 30-dimensional functions respectively,and its running time is decreased.Compared with the 7 state-of-the-art algorithms,the average ranking of ISCOA on the 10-dimensional and 30-dimensional functions are 1.48 and 1.69,ISCOA wins 17 and 18 times ranking the first,respectively,and obtains better optimization results.Experimental results on the practical engineering problem show that ISCOA has achieved the best results.These all proved that ISCOA has stronger search ability and more competitive,and that it has better application prospects.

Key words: Coyote optimization algorithm, Exploitation, Exploration, Greedy algorithm, Swarm intelligence optimization algorithm

中图分类号: 

  • TP181
[1]ZAHNG X M,WANG X,TU Q,et al.Particle swarm optimization algorithm combining example learning and opposition-based learning[J].Journal of Henan Normal University(Natural Scie-nce Edition),2017,45(6):97-105.
[2]YANG J S,ZENG B Q,HU P P.Spectrum allocation and power control based on harmony search algorithm in cognitive radio network[J].Computer Science,2015,42(S2):257-262.
[3]ZHANG X M,CHENG J F,WANG X,et al.Improved Shuffled Frog Leaping Algorithm and Its in Multi-threshold Image Segmentation [J].Computer Science,2018,45(8):54-62.
[4]MIRJALILI S,MIRJALILI S M,LEWIS A.A grey wolf optimizer[J].Advances in Engineering Software,2014,69(3):46-61.
[5]ZAHNG X M,WANG X,KANG Q,et al.Hybrid grey wolf optimizer with artificial bee colony and itsapplication to clustering optimization[J].Acta Electronica Sinca,2018,46(10):2430-2442.
[6]WANG G G,TAN Y.Improving metaheuristic algorithms with information feedback models[J].IEEE Transactions on Cybernetics,2017,99:1-14.
[7]WOLPERT D H,MACREADY W G.No free lunch theorems for optimization[J].IEEE Transactions on Evolutionary Computation,1997,1(1):67-82.
[8]PIEREZAN J,COELHO L D S.Coyote optimization algorithm:a new metaheuristic for global optimization problems[C]//2018 IEEE Congress on Evolutionary Computation (CEC).IEEE,2018:1-8.
[9]AWAD N H,ALI M Z,LIANG J J,et al.Problem definitions and evaluation criteria for the CEC2017 specialsession and competition on single objective bound constrainedreal-parameter numerical optimization[R]. Nanyang Technological University,Singapore,Technical Report,2016.
[10]WANG Y R,YU Y,GAO S C,et al.A hierarchical gravitational search algorithm with an effective gravitational constant [J].Swarm and Evolutionary Computation,2019,46:118-139.
[11]TAN Y,ZHU Y C.Fireworks Algorithm for Optimization[C]//International Conference in Swarm Intelligence.2010:355-364.
[12]RAO R V,SAVSANI V J,VAKHARIA D P.Teaching-learning-based optimization:A novel method for constrainedmechanical design optimization problems[J].Computer-Aided Design,2011,43(3):303-315.
[13]MENG A,LI Z,YIN H,et al.Accelerating particle swarm optimization using crisscross search[J].Information Sciences,2016,329(SI):52-72.
[14]AVDILEK I B.A hybrid firefly and particle swarm optimization algorithm for computationally expensive numerical problems[J].Applied Soft Computing,2018,66:232-249.
[15]DERRAC J,GARCIA S,MOLINA D,et al.A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms[J].Swarm and Evolutionary Computation,2011,1(1):3-18.
[16]BAYKASOGLU A,AKPINAR Ş.Weighted superposition at-traction (WSA):a swarm intelligence algorithm for optimization problems-part 2:constrained optimization[J].Applied Soft Computing,2015,37:396-415.
[17]LU C,GAO L,YI J.Grey wolf optimizer with cellular topological structure[J].Expert Systems with Applications,2018,107:89-114.
[1] 张翀宇, 陈彦明, 李炜.
边缘计算中面向数据流的实时任务调度算法
Task Offloading Online Algorithm for Data Stream Edge Computing
计算机科学, 2022, 49(7): 263-270. https://doi.org/10.11896/jsjkx.210300195
[2] 刘漳辉, 郑鸿强, 张建山, 陈哲毅.
多无人机使能移动边缘计算系统中的计算卸载与部署优化
Computation Offloading and Deployment Optimization in Multi-UAV-Enabled Mobile Edge Computing Systems
计算机科学, 2022, 49(6A): 619-627. https://doi.org/10.11896/jsjkx.210600165
[3] 黄光球, 陆秋琴.
垂直结构群落系统优化算法
Vertical Structure Community System Optimization Algorithm
计算机科学, 2020, 47(4): 194-203. https://doi.org/10.11896/jsjkx.190200273
[4] 黄光球,陆秋琴.
保护区种群迁移动力学优化算法
Protected Zone-based Population Migration Dynamics Optimization Algorithm
计算机科学, 2020, 47(2): 186-194. https://doi.org/10.11896/jsjkx.181202338
[5] 胡俊钦, 张佳俊, 黄引豪, 陈星, 林兵.
边缘环境下DNN应用的计算迁移调度技术
Computation Offloading Scheduling Technology for DNN Applications in Edge Environment
计算机科学, 2020, 47(10): 247-255. https://doi.org/10.11896/jsjkx.190900106
[6] 李卓, 徐哲, 陈昕, 李淑琴.
面向移动群智感知的位置相关在线多任务分配算法
Location-related Online Multi-task Assignment Algorithm for Mobile Crowd Sensing
计算机科学, 2019, 46(6): 102-106. https://doi.org/10.11896/j.issn.1002-137X.2019.06.014
[7] 陈晋音,胡可科,李玉玮.
基于MB-RRT*的无人机多点航迹规划算法研究
Research on UAV Multi-point Navigation Algorithm Based on MB-RRT*
计算机科学, 2018, 45(6A): 85-90.
[8] 朱瑞超,钱文华,普园媛,徐丹.
自相似性匹配的纹理合成
Texture Synthesis Based on Self-similarity Matching
计算机科学, 2018, 45(6A): 215-219.
[9] 胡庆成, 张勇, 邢春晓.
基于有重叠社区划分的社会网络影响最大化方法研究
K-clique Heuristic Algorithm for Influence Maximization in Social Network
计算机科学, 2018, 45(6): 32-35. https://doi.org/10.11896/j.issn.1002-137X.2018.06.005
[10] 孙焘,朱晓明.
基于格代数的最长公共子序列近似求解
Computing Longest Common Subsequences Approximately Based on Lattice
计算机科学, 2017, 44(2): 270-274. https://doi.org/10.11896/j.issn.1002-137X.2017.02.045
[11] 蔡国永,裴广战.
基于LT+模型的社交网络影响力最大化研究
Influence Maximization Based on LT+ Model in Social Networks
计算机科学, 2016, 43(9): 99-102. https://doi.org/10.11896/j.issn.1002-137X.2016.09.018
[12] 王俊,余伟,胡亚慧,李石君.
基于3-layer中心度的社交网络影响力最大化算法
Heuristic Algorithm Based on 3-layer Centrality for Influence Maximization in Social Networks
计算机科学, 2014, 41(1): 59-63.
[13] 张立冬,覃光成,李臻,尹浩.
网络编码在实时战术数据多播中的应用
Application of Network Coding in Real-time Tactical Data Multicast
计算机科学, 2010, 37(1): 138-141.
[14] 郭文强,秦志光,冯昊.
一种基于归零矩阵的TSP求解算法
New Solving Algorithm of TSP Based on Return-to-zero Matrix
计算机科学, 2009, 36(8): 254-257.
[15] 徐卫志 王洪国 于惠 杨海.
解决矩阵链相乘处理器调度问题的一种新算法

计算机科学, 2008, 35(4): 197-199.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!