计算机科学 ›› 2020, Vol. 47 ›› Issue (3): 61-66.doi: 10.11896/jsjkx.190500174

• 数据库&大数据&数据科学 • 上一篇    下一篇

基于边界域的邻域知识距离度量模型

杨洁1,2,王国胤1,李帅1   

  1. (重庆邮电大学计算智能重庆市重点实验室 重庆400065)1;
    (遵义师范学院物理与电子科学学院 贵州 遵义563002)2
  • 收稿日期:2019-05-30 出版日期:2020-03-15 发布日期:2020-03-30
  • 通讯作者: 王国胤(wanggy@cqupt.edu.cn)
  • 基金资助:
    国家自然科学基金(61572091,61472056);贵州省高层次创新人才项目(遵市科合人才[2018]15);贵州省教育厅科技人才成长项目(黔教合KY(2018)318)

Neighborhood Knowledge Distance Measure Model Based on Boundary Regions

YANG Jie 1,2,WANG Guo-yin1,LI Shuai1   

  1. (Chongqing Key Laboratory of Computational Intelligence, Chongqing University of Post and Telecommunications, Chongqing 400065, China)1;
    (School of Physics and Electronic Science, Zunyi Normal University, Zunyi, Guizhou 563002, China)2
  • Received:2019-05-30 Online:2020-03-15 Published:2020-03-30
  • About author:YANG Jie,born in 1987,Ph.D,associate professor.His research interests include data mining,machine learning,three-way decision and rough set. WANG Guo-yin,born in 1970,Ph.D,professor.His research interests include data mining,machine learning,granular computing and rough set.
  • Supported by:
    This work was supported by the National Science Foundation of China (61572091, 61472056), High level Innovative Talents Project of Guizhou Province and Science ([2018]15) and technology talent growth project of Guizhou Province (KY (2018)318).

摘要: 粗糙集的不确定性度量在知识获取中扮演着非常重要的角色。在邻域粗糙集理论中,当前不确定性度量方面的研究工作主要专注于度量单个知识空间的不确定性及其随粒度变化的单调性规律,其仍存在以下缺点:1)邻域粗糙集不确定性来自于邻域粒中属于目标概念的元素和不属于目标概念的元素,当前的方法没有同时考虑每个邻域信息粒的这两部分;2)不能反映不同知识空间对目标概念刻画能力的差异性;3)由于当前的知识距离包含了粒度划分的信息,已有方法在一些应用场合下不够准确,例如属性约简中的知识启发式搜索及其粒度选择。对此,文中首先构建了一种更加直观准确的邻域粗糙集的不确定性度量方法——邻域熵,并证明了不确定性度量随着粒度的细化具有单调性;为了反映不同邻域信息粒对目标概念刻画能力的差异性,提出了一种带近似描述能力的邻域粒距离,称为相对邻域粒距离,并介绍了它的相关性质;针对分层递阶的多粒度知识空间中的粒度选择问题,建立了基于边界域的邻域知识距离度量模型,该知识距离可以反映不同邻域知识空间对目标概念的刻画能力的差异性。

关键词: 不确定性度量, 邻域粗糙集, 邻域熵, 相对邻域粒距离, 知识距离

Abstract: Uncertainty measure of rough sets plays an important role in knowledge acquisition.In neighborhood rough sets,the current researches on uncertainty measure mainly focus on measuring the uncertainty of a single knowledge space and its monotonicity with the changing granularities.However,there are still some shortcomings.Firstly,the uncertainty of neighborhood rough set comes from elements belonging to target concept and elements not belonging to target concept in neighborhood granules,but current researches do not consider the two parts of each neighborhood information granule at the same time.Secondly,the difference between different knowledge spaces for describing the target concept is hard to reflect.Thirdly,the current knowledge distance measures are too fine,which contains granularity information and is inaccurate in some applications,i.e.heuristic search in attribute reduction.Therefore,based on the granularity measure of neighborhood information granules,this paper constructed the neighborhood entropy which is monotonic with the granularity being finer.In order to reflect the difference between different neighborhood information granule for describing the target concept,this paper proposed a neighborhood granule distance with approximate description ability,which is called relative neighborhood granule distance (RNGD).Then,several important properties were presented.The neighborhood knowledge distance based on boundary regions was established based on the RNGD,which can reflect the difference between different neighborhood knowledge spaces for describing the target concept.Finally,the validity of neighborhood knowledge distance based on decision regions was verified by experiments.

Key words: Knowledge distance, Neighborhood entropy, Neighborhood rough sets, Relative neighborhood granule distance, Uncertainty measure

中图分类号: 

  • TP311
[1]PEDRYCZ W,ALHMOUZ R,MORFEQ A,et al.The design of free structure granular mappings:the use of the principle of justifiable granularity [J].IEEE Transactions on Cybernetics,2013,43(6):2105-2113.
[2]PEDRYCZ W,SKOWRON A,KREINOVICH V.Handbook of granular computing [M].Wiley-Interscience,2008:719-740.
[3]YAO J T,VASILAKOS A V,PEDRYCZ W.Granular Computing:Perspectives and Challenges[J].IEEE Transactions on Cybernetics,2013,43(6):1977-1989.
[4]YAO Y Y.Perspectives of granular computing[C]∥IEEE International Conference on Granular Computing.IEEE,2005:85-90.
[5]WANG G Y,YANG J,XU J.Granular computing:from granularity optimization to multi-granularity joint problem solving [J].Granular Computing,2017,2(3):1-16.
[6]ZADEH L A.Fuzzy sets[J].Information and Control,1965, 8(3):338-353.
[7]PAWLAK Z.Rough sets[J].International Journal of Computer Information Sciences,1982,11(5):341-356.
[8]张钹,张铃.问题求解理论及应用[M].北京:清华大学出版社,1990.
[9]LI D Y,MENG H J.Membership and membership cloud genera- tor[J].Computer Research and Development,1995(6):15-20.
[10]LIN T Y.Neighborhood systems and relational databases[C]∥Proceedings of the 1988 ACM Sixteenth Annual Conference on Computer Science.ACM,1988:725.
[11]YAO Y Y.Relational interpretations of neighborhood operators and rough set approximation operators[J].Information Sciences,1998,111(1-4):239-259.
[12]YAO Y Y.Granular computing using neighborhood systems,advances in soft computing:engineering design and manufacturing[C]∥The 3rd On-line World Conference on Soft Computing.London:Springer,1999:539-553.
[13]HU Q H,YU D,XIE Z.Neighborhood classifiers[J].Expert Systems with Applications,2008,34(2):866-876.
[14]HU Q H,YU D,LIU J,et al.Neighborhood rough set based heterogeneous feature subset selection[J].Information Sciences,2008,178(18):3577-3594.
[15]LI W,HUANG Z,JIA X,et al.Neighborhood based decision-theoretic rough set models[J].International Journal of Approximate Reasoning,2016,69:1-17.
[16]YANG X,MING Z,DOU H,et al.Neighborhood systems-based rough sets in incomplete information system[J].Knowledge-Based Systems,2011,24(6):858-867.
[17]WANG Q,QIAN Y H,LIANG X Y,et al.Local neighborhood rough set[J].Knowledge-Based Systems,2018,153:53-64.
[18]YONG L,HUANG W,JIANG Y,et al.Quick attribute reduct algorithm for neighborhood rough set model[J].Information Sciences,2014,271(7):65-81.
[19]CHEN Y M,ZENG Z,LU J.Neighborhood rough set reduction with fish swarm algorithm[J].Soft Computing,2016,21(23):1-12.
[20]YING Y,PEDRYCZ W,MIAO D.Neighborhood rough sets based multi-label classification for automatic image annotation[J].International Journal of Approximate Reasoning,2013,54(9):1373-1387.
[21]KUMAR S U,INBARANI H H.Neighborhood rough set based ECG signal classification for diagnosis of cardiac diseases[J].Soft Computing,2016,21(16):4721-4733.
[22]XIE H,TAN K,WANG L,et al.Hyperspectral band selection based on a variable precision neighborhood rough set[J].Applied Optics,2016,55(3):462.
[23]ZHONG Y,ZHANG X,SHAN F.Hybrid data-driven outlier detection based on neighborhood information entropy and its developmental measures[J].Expert Systems with Applications,2018,112:243-257.
[24]MENG J,JING Z,RUI L,et al.Gene selection using rough set based on neighborhood for the analysis of plant stress response[J].Applied Soft Computing,2014,25(C):51-63.
[25]CHEN Y M,WU K,CHEN X,et al.An entropy-based uncertainty measurement approach in neighborhood systems[J].Information Sciences,2014,279:239-250.
[26]CHEN Y M,XUE Y,MA Y,et al.Measures of uncertainty for neighborhood rough sets[J].Knowledge-Based Systems,2017,120:226-235.
[27]TANG Z H,CHEN Y M.Uncertainty measurement methods for neighborhood systems[J].Control and Decision,2014,29(4):691-695.
[28]ZHENG T,ZHU L.Uncertainty measures of Neighborhood System-based rough sets[J].Knowledge-Based Systems,2015,86:57-65.
[29]QIAN Y H,LIANG J Y,DANG C Y.Knowledge structure, knowledge granulation and knowledge distance in a knowledge base[J].International Journal of Approximate Reasoning,2009,50:174-188.
[30]LIANG J Y,RU L,QIAN Y H.Distance:A more comprehensible perspective for measures in rough set theory[J].Knowledge-Based Systems,2012,27(3):126-136.
[31]QIAN Y H,CHENG H,WANG J,et al.Grouping granular structures in human granulation intelligence[J].Information Sciences,2017,382:150-169.
[32]YANG X B,QIAN Y H,YANG J Y.On characterizing hierarchies of granulation structures via distances[J].Fundamenta Informaticae,2013,123(3):365-380.
[33]CHEN Y M,QIN N,LI W,et al.Granule structures,distances and measures in neighborhood systems[J].Knowledge-Based Systems,2018,165:268-281.
[34]YANG J,WANG G Y,ZHANG Q H.Knowledge Distance Measure in Multigranulation Spaces of Fuzzy Equivalence Relations[J].Information Sciences,2018,448-449:18-35.
[35]QIAN Y H,LI Y,LIANG J Y,et al.Fuzzy Granular Structure Distance[J].IEEE Transactions on Fuzzy Systems,2015,23(6):2245-2259.
[36]WANG G Y,ZHANG Q H.Uncertainty of Rough Sets in Different Knowledge Granularities[J].Chinese Journal ofCompu-ters,2008,31(9):1588-1598.
[1] 陈于思, 艾志华, 张清华.
基于三角不等式判定和局部策略的高效邻域覆盖模型
Efficient Neighborhood Covering Model Based on Triangle Inequality Checkand Local Strategy
计算机科学, 2022, 49(5): 152-158. https://doi.org/10.11896/jsjkx.210300302
[2] 孙林, 黄苗苗, 徐久成.
基于邻域粗糙集和Relief的弱标记特征选择方法
Weak Label Feature Selection Method Based on Neighborhood Rough Sets and Relief
计算机科学, 2022, 49(4): 152-160. https://doi.org/10.11896/jsjkx.210300094
[3] 饶梦,苗夺谦,罗晟.
一种粗糙不确定的图像分割方法
Rough Uncertain Image Segmentation Method
计算机科学, 2020, 47(2): 72-75. https://doi.org/10.11896/jsjkx.190500177
[4] 樊鑫,陈红梅.
基于差别矩阵和mRMR的分步优化特征选择算法
Stepwise Optimized Feature Selection Algorithm Based on Discernibility Matrix and mRMR
计算机科学, 2020, 47(1): 87-95. https://doi.org/10.11896/jsjkx.181202320
[5] 姜泽华, 王怡博, 徐刚, 杨习贝, 王平心.
面向多尺度的属性约简加速器
Multi-scale Based Accelerator for Attribute Reduction
计算机科学, 2019, 46(12): 250-256. https://doi.org/10.11896/jsjkx.181102031
[6] 杨洁, 王国胤, 张清华, 冯林.
层次粒结构下粗糙模糊集的不确定性度量
Uncertainty Measure of Rough Fuzzy Sets in Hierarchical Granular Structure
计算机科学, 2019, 46(1): 45-50. https://doi.org/10.11896/j.issn.1002-137X.2019.01.007
[7] 孙林,潘俊方,张霄雨,王伟,徐久成.
一种基于邻域粗糙集的多标记专属特征选择方法
Multi-label-specific Feature Selection Method Based on Neighborhood Rough Set
计算机科学, 2018, 45(1): 173-178. https://doi.org/10.11896/j.issn.1002-137X.2018.01.030
[8] 惠景丽,潘巍,吴康康,周晓英.
基于非对称变邻域粗糙集模型的属性约简
Attribute Reduction Based on Asymmetric Variable Neighborhood Rough Set
计算机科学, 2015, 42(6): 282-287. https://doi.org/10.11896/j.issn.1002-137X.2015.06.059
[9] 王斌,邵明文,王金鹤,张俊虎.
基于改进的优势关系下的不完备区间值信息系统评估模型
New Evaluation Model for Incomplete Interval-valued Information System Based on Improved Dominance Relations
计算机科学, 2014, 41(2): 253-256.
[10] 陈涛,洪增林,邓方安.
基于优化的邻域粗糙集的混合基因选择算法
Hybrid Gene Selection Algorithm Based on Optimized Neighborhood Rough Set
计算机科学, 2014, 41(10): 291-294. https://doi.org/10.11896/j.issn.1002-137X.2014.10.061
[11] 胡清华,朱鹏飞,左明.
基于间隔分布集成优化的齿轮箱故障诊断
Gear Fault Diagnosis Based on Margin Distribution Ensemble Optimization
计算机科学, 2013, 40(4): 204-208.
[12] 周红琼,周宇,叶庆卫,王晓东.
基于IP应用的网络质量评价研究
Study of Network Quality Evaluation Based on IP Application
计算机科学, 2012, 39(Z6): 125-128.
[13] 韩虎,党建武,任恩恩.
基于邻域粗糙集的支持向量机分类方法研究
Research of Support Vector Classifier Based on Neighborhood Rough Set
计算机科学, 2010, 37(2): 229-231.
[14] .
信息系统中的知识距离与知识粗糙熵

计算机科学, 2007, 34(3): 151-154.
[15] 牟克典.
时态Dempster—Shafer理论

计算机科学, 2003, 30(7): 4-6.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!