计算机科学 ›› 2020, Vol. 47 ›› Issue (4): 74-84.doi: 10.11896/jsjkx.190600152

• 数据库&大数据&数据科学 • 上一篇    下一篇

基于信任系统的条件偏好协同度量框架

余航, 魏炜, 谭征, 刘惊雷   

  1. 烟台大学计算机与控制工程学院 山东 烟台264005
  • 收稿日期:2019-06-26 出版日期:2020-04-15 发布日期:2020-04-15
  • 通讯作者: 谭征(yttanzheng@163.com)
  • 基金资助:
    国家自然科学基金(61572419,61773331,61703360);山东省高校科学技术计划项目(J17K091)

Contextual Preference Collaborative Measure Framework Based on Belief System

YU Hang, WEI Wei, TAN Zheng, LIU Jing-lei   

  1. School of Computer and Control Engineering,Yantai University,Yantai,Shandong 264005,China
  • Received:2019-06-26 Online:2020-04-15 Published:2020-04-15
  • Contact: TAN Zheng,born in 1968,master,associate professor.His main research interests include data mining,nature language process.
  • About author:YU Hang,born in 1998.His main research interests include data mining,collaborative filtering,human robot interaction.
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (61572419,61773331,61703360),Shandong Province University Science and technology project (J17K091).

摘要: 为了减少偏好度量过程中的人为干预,同时提高偏好度量算法的效率和准确性,提出一种基于信任系统的偏好协同度量框架。首先,提出了规则间的距离和规则集的内部距离等概念来具体化规则之间的关系。在此基础上,提出了基于规则集平均内部距离的规则集聚合算法PRA,旨在保证损失最少信息的情况下筛选出最具代表性的全体用户的共同偏好,即共识偏好。之后,提出Common belief的概念和一种改进的信任系统,使用共识偏好作为信任系统的证据,在考虑用户一致性的同时还允许用户保留个性化信息。在信任系统下,提出了基于信任系统的有趣度度量标准,并量化了偏好的信任度和偏离度,用于描述用户偏好和信任系统的一致或相悖程度,并将用户偏好分为泛化偏好或个性化偏好,最终依据信任度和偏离度得出有趣度,从而找出最有趣的规则。在计算有趣度的过程中,提出了一个可以使用不同信任度公式来计算有趣度的可扩展的计算框架。为了进一步验证度量框架的准确性和有效性,以加权的余弦相似度公式和相关系数公式为例,提出了IMCos算法和IMCov算法。实验结果表明,信任度和偏离度有效地反映了偏好的不同特征,并且与两种最新的算法CONTENUM和TKO相比,度量框架发现的Top-K规则在召回率、准确率和F1-Measure等指标上均更优。

关键词: 共识偏好, 规则集聚合, 上下文偏好, 数据挖掘, 信任系统, 有趣度度量

Abstract: To reduce the human intervention in the preference measure process,this article proposes a preference collaborative measure framework based on an updated belief system,which is also capable of improving the accuracy and efficiency of preferen-ce measure algorithms.Firstly,the distance of rules and the average internal distance of rulesets are proposed for specifying the relationship between the rules.For discovering the most representative preferences that are common in all users,namely common preference,a algorithm based on average internal distance of ruleset,PRA algorithm,is proposed,which aims to finish the discoveryprocess with minimum information loss rate.Furthermore,the concept of Common belief is proposed to update the belief system,and the common preferences are the evidences of updated belief system.Then,under the belief system,the proposed belief degree and deviation degree are used to determine whether a rule confirms the belief system or not and classify the preference rules into two kinds(generalized or personalized),and eventually filters out Top-K interesting rules relying on belief degree and deviation degree.Based on above,a scalable interestingness calculation framework that can apply various formulas is proposed for accurately calculating interestingness in different conditions.At last,IMCos algorithm and IMCov algorithm are proposed as exemplars to verify the accuracy and efficiency of the framework by using weighted cosine similarity and correlation coefficients as belief degree.In experiments,the proposed algorithms are compared to two state-of-the-art algorithms and the results show that IMCos and IMCov outperform than the other two in most aspects.

Key words: Belief system, Common preference, Contextual preference, Data mining, Interestingness measure, Ruleset aggregation

中图分类号: 

  • TP311
[1]ZHU H S,YU K F,CAO H H,et al.Mining personal contextaware preferences for mobile users[C]//Proceedings of the IEEE 12th International Conference on Data Mining.IEEE Computer Society,2012:1212-1217.
[2]DE AMO S,DIALLO M S,DIOP C T,et al.Contextual preference mining for user profile construction[J].Information Systems,2015,49:182-199.
[3]WANG L C,MENG X W,ZHANG Y J.Context-Aware Recommender Systems[J].Journal of Software,2012,23(1):1-20.
[4]TAN Z,LIU J L,YU H.Conditional preference mining based on Max Clique[J].Journal of Computer Applications,2017,37(11):3107-3114.
[5]GENG L,HAMILTON H J.Interestingness measures for data mining:A survey[J].ACM Computing Surveys (CSUR),2006,38(3):9.
[6]SHIMONY S E.On Graphical Modeling of Preference and Importance[J].Journal of Artificial Intelligence Research,2006,25(1):389-424.
[7]PHILIPPE F V,VINCENT S T.Mining Top-K Non-redundant Association Rules[M]//Foundations of Intelligent Systems.Springer Berlin Heidelberg,2012:31-40.
[8]LAN P P,PHAN N Q,NGUYEN K M,et al.Interestingnesslab:A Framework for Developing and Using Objective Interes-tingness Measures[C]//International Conference on Advances in Information & Communication Technology.2016.
[9]SZPEKTOR I.Contextual preferences[C]//Meeting of the Association for Computational Linguistics.2008:683-691.
[10]STEFANIDIS K,PITOURA E,VASSILIADIS P.Managing contextual preferences[J].Information Systems,2011,36(8):1158-1180.
[11]LIU J,SUI C,DENG D,et al.Representing conditional preference by boosted regression trees for recommendation[M].Elsevier Science Inc.,2016.
[12]ZHENG L,ZHU F X,YAO X,et al.Recommendation Rating Prediction Based on Attribute Boosting with Partial Sampling[J].Chinese Journal of Computers,2016,39(8):1501-1514.
[13]EITER T,FINK M,WEINZIERL A.Preference-based inconsistency assessment in multi-context systems[C]//European Conference on Logics in Artificial Intelligence.Springer-Verlag,2010.
[14]ZHANG X,WANG Y Q.Correlation-based interesting association rules mining[D].Wuhan:Wuhan University of Science and Technology,2002.
[15]TAN X Q.The Comparative Study on Interestingness Measures for Mining Association Rules[J].Journal of the China Society for Scientific and Technical Information,2007,26(2):266-270.
[16]YU C H,LIU X J,LI B.Implicit Feedback Personalized Recommendation Model Fusing Context-aware and Social Network Process[J].Computer Science,2016,43(6):248-253.
[17]LIU N N,ZHAO M,YANG Q.Probabilistic latent preference analysis for collaborative filtering[C]//Proceedings of the 18th ACM Conference on Information and Knowledge Management.Hong Kong,China:ACM,2009.
[18]PAN W,CHEN L.GBPR:group preference based Bayesian personalized ranking for one-class collaborative filtering[C]//Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence.2013.
[19]KYUNGYONG J,JUNGHYUN L.User preference mining through hybrid collaborative filtering and content-based filtering in recommendation system[J].Ieice Transactions on Information & Systems,2004,87(12):2781-2790.
[20]SHAHJALAL M A,AHMAD Z,AREFIN M S,et al.A user rating based collaborative filtering approach to predict movie preferences[C]//2017 3rd International Conference on Electrical Information and Communication Technology (EICT).IEEE,2017.
[21]GAO S ,GUO G B,LIN Y S,et al.Pairwise Preference Over Mixed-Type Item-Sets Based Bayesian Personalized Ranking for Collaborative Filtering[C]//2017 IEEE 15th Intl Conf on Dependable,Autonomic and Secure Computing,15th Intl Conf on Pervasive Intelligence and Computing,3rd Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech).IEEE,2017.
[22]HA V,HADDAWY P.Similarity of personal preferences:theoretical foundations and empirical analysis[J].Artificial Intelligence,2003,146(2):149-173.
[23]GONG Z W,Forrest J,YANG Y J.The optimal group consensus models for 2-tuple linguistic preference relations[J].Know-ledge-Based Systems,2013,37:427-437.
[24]SNEDECOR G W,COCHRAN W G.Statistical Methods(Sixth-Edition)[M].The Iowa State University Press,1967.
[25]BOUTILIER C,BRAFMAN R I,HOOS H H,et al.Reasoning with conditional ceteris paribus preference statements[C]//Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence.Morgan Kaufmann Publishers Inc.,1999:71-80.
[26]SILBERSCHATZ A,TUZHILIN A.What makes patterns interesting in knowledge discovery systems[J].IEEE Transactions on Knowledge and data engineering,1996,8(6):970-974.
[27]GRAHAM I.Non-standard logics for automated reasoning[J].Fuzzy Sets & Systems,1990,36(3):405-406.
[28]LENAT D B,GUHA R V.Building large knowledge-based systems[M].Addison-Wesley Pub.Co,1990.
[29]TSENG V S,WU C W,FOURNIER-VIGER P,et al.Efficient algorithms for mining top-k high utility itemsets[J].IEEE Transactions on Knowledge and data engineering,2015,28(1):54-67.
[1] 黎嵘繁, 钟婷, 吴劲, 周帆, 匡平.
基于时空注意力克里金的边坡形变数据插值方法
Spatio-Temporal Attention-based Kriging for Land Deformation Data Interpolation
计算机科学, 2022, 49(8): 33-39. https://doi.org/10.11896/jsjkx.210600161
[2] 么晓明, 丁世昌, 赵涛, 黄宏, 罗家德, 傅晓明.
大数据驱动的社会经济地位分析研究综述
Big Data-driven Based Socioeconomic Status Analysis:A Survey
计算机科学, 2022, 49(4): 80-87. https://doi.org/10.11896/jsjkx.211100014
[3] 孔钰婷, 谭富祥, 赵鑫, 张正航, 白璐, 钱育蓉.
基于差分隐私的K-means算法优化研究综述
Review of K-means Algorithm Optimization Based on Differential Privacy
计算机科学, 2022, 49(2): 162-173. https://doi.org/10.11896/jsjkx.201200008
[4] 张亚迪, 孙悦, 刘锋, 朱二周.
结合密度参数与中心替换的改进K-means算法及新聚类有效性指标研究
Study on Density Parameter and Center-Replacement Combined K-means and New Clustering Validity Index
计算机科学, 2022, 49(1): 121-132. https://doi.org/10.11896/jsjkx.201100148
[5] 马董, 李新源, 陈红梅, 肖清.
星型高影响的空间co-location模式挖掘
Mining Spatial co-location Patterns with Star High Influence
计算机科学, 2022, 49(1): 166-174. https://doi.org/10.11896/jsjkx.201000186
[6] 徐慧慧, 晏华.
基于相对危险度的儿童先心病风险因素分析算法
Relative Risk Degree Based Risk Factor Analysis Algorithm for Congenital Heart Disease in Children
计算机科学, 2021, 48(6): 210-214. https://doi.org/10.11896/jsjkx.200500082
[7] 张岩金, 白亮.
一种基于符号关系图的快速符号数据聚类算法
Fast Symbolic Data Clustering Algorithm Based on Symbolic Relation Graph
计算机科学, 2021, 48(4): 111-116. https://doi.org/10.11896/jsjkx.200800011
[8] 张寒烁, 杨冬菊.
基于关系图谱的科技数据分析算法
Technology Data Analysis Algorithm Based on Relational Graph
计算机科学, 2021, 48(3): 174-179. https://doi.org/10.11896/jsjkx.191200154
[9] 邹承明, 陈德.
高维大数据分析的无监督异常检测方法
Unsupervised Anomaly Detection Method for High-dimensional Big Data Analysis
计算机科学, 2021, 48(2): 121-127. https://doi.org/10.11896/jsjkx.191100141
[10] 刘新斌, 王丽珍, 周丽华.
MLCPM-UC:一种基于模式实例分布均匀系数的多级co-location模式挖掘算法
MLCPM-UC:A Multi-level Co-location Pattern Mining Algorithm Based on Uniform Coefficient of Pattern Instance Distribution
计算机科学, 2021, 48(11): 208-218. https://doi.org/10.11896/jsjkx.201000097
[11] 刘晓楠, 宋慧超, 王洪, 江舵, 安家乐.
Grover算法改进与应用综述
Survey on Improvement and Application of Grover Algorithm
计算机科学, 2021, 48(10): 315-323. https://doi.org/10.11896/jsjkx.201100141
[12] 张煜, 陆亿红, 黄德才.
基于密度峰值的加权犹豫模糊聚类算法
Weighted Hesitant Fuzzy Clustering Based on Density Peaks
计算机科学, 2021, 48(1): 145-151. https://doi.org/10.11896/jsjkx.200400043
[13] 游兰, 韩雪薇, 何正伟, 肖丝雨, 何渡, 潘筱萌.
基于改进Seq2Seq的短时AIS轨迹序列预测模型
Improved Sequence-to-Sequence Model for Short-term Vessel Trajectory Prediction Using AIS Data Streams
计算机科学, 2020, 47(9): 169-174. https://doi.org/10.11896/jsjkx.190800060
[14] 张素梅, 张波涛.
一种基于量子耗散粒子群的评估模型构建方法
Evaluation Model Construction Method Based on Quantum Dissipative Particle Swarm Optimization
计算机科学, 2020, 47(6A): 84-88. https://doi.org/10.11896/JsJkx.190900148
[15] 邓甜甜, 熊荫乔, 何贤浩.
一种基于时序性告警的新型聚类算法
Novel Clustering Algorithm Based on Timing-featured Alarms
计算机科学, 2020, 47(6A): 440-443. https://doi.org/10.11896/JsJkx.190600173
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!