计算机科学 ›› 2021, Vol. 48 ›› Issue (1): 273-279.doi: 10.11896/jsjkx.191100020

• 信息安全 • 上一篇    下一篇

基于深度神经网络的庞氏骗局合约检测方法

张艳梅, 楼胤成   

  1. 中央财经大学信息学院 北京 100081
  • 收稿日期:2019-11-03 修回日期:2019-12-27 出版日期:2021-01-15 发布日期:2021-01-15
  • 通讯作者: 张艳梅(jlzym0309@sina.com)
  • 基金资助:
    国家自然科学基金(61602536,61773415,61672104)

Deep Neural Network Based Ponzi Scheme Contract Detection Method

ZHANG Yan-mei, LOU Yin-cheng   

  1. Information School,Central University of Finance and Economics,Beijing 100081,China
  • Received:2019-11-03 Revised:2019-12-27 Online:2021-01-15 Published:2021-01-15
  • About author:ZHANG Yan-mei,born in 1976,Ph.D,professor,is a member of China Compu-ter Federation.Her main research interests include business intelligence,ser-vice computing and blockchain.
  • Supported by:
    National Natural Science Foundation of China(61602536,61773415,61672104).

摘要: 区块链技术的发展吸引了全球投资者的目光。目前,有数以万计的智能合约部署在以太坊上。在给金融、溯源等诸多行业带来颠覆性的创新之余,以太坊上的部分智能合约含有诸如庞氏骗局等欺诈形式,给全球投资者造成了数百万美元的损失。但是,目前针对互联网金融背景下庞氏骗局的定量识别方法较少,针对以太坊上庞氏骗局合约检测的研究较少,且检测精度有进一步提高的空间,文中提出基于深度神经网络的庞氏骗局合约检测方法。该方法提取出智能合约中有助于识别庞氏骗局的特征,如智能合约的操作码特征和账户特征,形成数据集,而后在数据集上训练模型,在测试集上检测性能。实验结果表明,基于深度神经网络的庞氏骗局合约检测方法具有99.6%的查准率和96.3%的查全率,均优于现有方法。

关键词: 区块链, 以太坊, 智能合约, 庞氏骗局, 深度神经网络

Abstract: The development of blockchain technology has attracted the attention of global investors.Currently,tens of thousands of smart contracts are deployed on Ethereum.In spite of bringing disruptive innovation to finance,traceability and many other industries,some smart contracts on Ethereum contain fraudulent forms such as Ponzi schemes,causing millions of dollars of losses to global investors.However,at present,there are few quantitative identification methods for Ponzi scheme under the background of Internet finance,few researches on detection of Ponzi scheme contract on Ethereum,and the detection accuracy needs to be improved.Therefore,a Ponzi scheme contract detection method based on deep neural network is proposed.It extracts the features of smart contract that are helpful to identify Ponzi scheme,such as operation code features and account features,to form a data set.Then,the model is trained on the dataset and performance is tested on test set.The experimental results show that the Ponzi scheme contract detection method based on deep neural network has a precision of 99.6% and a recall rate of 96.3%,which are better than that of existing methods.

Key words: Blockchain, Ethereum, Smart contract, Ponzi scheme, Deep neural network

中图分类号: 

  • TP309.2
[1] ZHENG Z B,XIE S A.Blockchain challenges and opportunities:A survey[C/OL]//International Journal of Web and Grid Ser-vices.http://https://xueshu.baidu.com/usercenter/paper/show?paperid=7e00413a964b3b16c3495eb19c64a1f4&site=xueshu_se.
[2] SWAN M.Blockchain:Blueprint for a New Economy[M].Newton,MA,USA:O'Reilly Media,2015.
[3] Bitcoin:A Peer-to-Peer Electronic Cash System.[OL].https://bitcoin.org/bitcoin.pdf.
[4] CoinDesk.Understanding Ethereum-blockchain Research Report [OL].www.coindesk.com/research/understandingethereum-report/.
[5] A Next-Generation Smart Contract and Decentralized Application Platform.[OL].https://github.com/ethereumlwiki/wiki/WhitePaper.
[6] SZABO N.Smart Contracts:Building Blocks for Digital Markets [OL].http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html.
[7] BOCEK T.Digital Marketplaces Unleashed[M].Springer-Verlag GmbH.2017-09-15:169-184.ISBN 978-3-662-49274-1.
[8] NORTA A.Creation of smart-contracting collaborations for decentralized autonomous organizations[OL].https://link.springer.com/chapter/10.1007%2F978-3-319-21915-8_1.
[9] CHRISTIDIS K,DEVETSIKIOTIS M.Blockchains and smartcontracts for the internet of things[C]//IEEE Access.2016:2292-2303.
[10] HE P,YU G,ZHANG Y F,et al.Survey on Blockchain Technology and Its Application Prospect[J].Computer Science,2017,44(4):1-7,15.
[11] WANG Q G,HE P,NIE T Z,et al.Survey of Data Storage and Query Techniques in Blockchain Systems[J].Computer Science,2018,45(12):12-18.
[12] HIGGINS S.SEC Seizes Assets from Alleged Altcoin Pyramid Scheme[OL].https://www.coindesk.com/sec-seizesalleged-altcoin-pyramid-scheme.
[13] KEIRNS G.Gemcoin Ponzi Scheme Operator Hit with $74Million Judgment.[OL].https://bitcoinwiki.co/gemcoinponzi-scheme-operator-hit-with-74-million-judgment/.
[14] MORRIS D Z.The Rise of Cryptocurrency Ponzi Schemes[OL].https://www.theatlantic.com/technology/archive/2017/05/cryptocurrency-ponzi-schemes/5286.
[15] ZHAO M.Identification and prevention of Ponzi scheme under the background of internet finance[J].Zhejiang Finance,2016(8):13-17.
[16] CHEN W,ZHENG Z,NGAI E,et al.Exploiting Blockchain Data to Detect Smart Ponzi Schemes on Ethereum[J/OL].IEEE Access,2019:1-1.https://www.researchgate.net/publication/331853833_Exploiting_Blockchain_Data_to_Detect_Smart_Ponzi_Schemes_on_Ethereum.
[17] CHEN W,ZHENG Z,CUI J,et al.Detecting ponzi schemes on ethereum:Towards healthier blockchain technology[C]//Proc.World Wide Web Conf.World Wide Web,2018:1409-1418.
[18] Wikipedia.PonziScheme[OL].https://en.wikipedia.org/wiki/Ponzi_scheme.
[19] YAO L,CHEN W.The Enlightenment of American P2P Supervision[J].China Finance,2015(7):63-64.
[20] DENG L,YU D.Deep Learning:Methods and Applications[J].Foundations & Trends in Signal Processing,2014,7(3).
[21] LECUN Y,BENGIO Y,HINTON G.Deep learning[OL].https://www.nature.com/articles/nature14539.
[22] SCHMIDHUBER,JÜRGEN.Deep Learning in Neural Net-works:An Overview[J].Neural Netw,2015,61:85-117.
[23] JIAO L C,YANG S Y,LIU F,et al.Seventy Years Beyond Neural Networks:Retrospect and Prospect[J].Chinese Journal of Computers,2016,39(8):1697-1716.
[24] FRANSCOIS C.Deep Learning with Python[M].Beijing:Posts and Telecommunications Press,2018.
[25] HUANG L W,JIANG B T,LU S Y,et al.Survey on Deep Learning Based Recommender Systems[J].Chinese Journal of Computers,2018,41(7):1619-1647.
[26] LI C,CHAI Y M,NAN X F,et al.Research on Problem Classification Method Based on Deep Learning[J].Computer Science,2016,43(12):115-119.
[27] BARTOLETTI M,CARTA S,CIMOLI T,et al.Dissecting ponzi schemes on ethereum:Identification,analysis,and impact[OL].https://arxiv.org/abs/1703.03779.
[28] VASEK M,MOORE T.There's No Free Lunch,Even Using Bitcoin:Tracking the Popularity and Profits of Virtual Currency Scams[C]//Springer Berlin Heidelberg.2015:44-61.
[1] 邵炜晖, 王宁, 韩传峰, 许维胜. 基于区块链的一体化应急应战机制[J]. 计算机科学, 2021, 48(1): 287-294.
[2] 李莹, 于亚新, 张宏宇, 李振国. 基于TBchain区块链的高可信云存储模型[J]. 计算机科学, 2020, 47(9): 330-338.
[3] 刘帅, 甘国华, 刘明熹, 房勇, 汪寿阳. 一种基于拓扑结构及分配机制设计的多子块激励共识机制[J]. 计算机科学, 2020, 47(7): 268-277.
[4] 陆歌皓, 谢莉红, 李析禹. 区块链共识算法对比研究[J]. 计算机科学, 2020, 47(6A): 332-339.
[5] 洪小玲, 万虎, 肖晓, 孙浩祥. 基于区块链的制造联盟系统[J]. 计算机科学, 2020, 47(6A): 369-374.
[6] 丁子昂, 乐曹伟, 吴玲玲, 付明磊. 基于CEEMD-Pearson和深度LSTM混合模型的PM2.5浓度预测方法[J]. 计算机科学, 2020, 47(6A): 444-449.
[7] 林旭丹, 鲍士兼, 赵立昕, 赵成林. 基于Hyperledger Fabric的汽车供应链系统的方案设计与性能分析[J]. 计算机科学, 2020, 47(6A): 546-551.
[8] 可雨憬, 敬茂华, 郑涵尹. 区块链技术在信托行业的应用研究[J]. 计算机科学, 2020, 47(6A): 591-595.
[9] 任仪. 基于区块链与人工智能的网络多服务器SIP信息加密系统设计[J]. 计算机科学, 2020, 47(6A): 634-638.
[10] 张启明, 陆建华, 李守智, 徐建栋. 基于区块链构建新型企业客户服务技术平台[J]. 计算机科学, 2020, 47(6A): 639-642.
[11] 叶少杰, 汪小益, 徐才巢, 孙建伶. BitXHub:基于侧链中继的异构区块链互操作平台[J]. 计算机科学, 2020, 47(6): 294-302.
[12] 尚骏远, 杨乐涵, 何琨. 基于特征可视化分析深度神经网络的内部表征[J]. 计算机科学, 2020, 47(5): 190-197.
[13] 谢英英, 石涧, 黄硕康, 雷凯. 面向5G的命名数据网络物联网研究综述[J]. 计算机科学, 2020, 47(4): 217-225.
[14] 王辉, 刘玉祥, 曹顺湘, 周明明. 融入区块链技术的医疗数据存储机制[J]. 计算机科学, 2020, 47(4): 285-291.
[15] 冯涛, 焦滢, 方君丽, 田野. 基于联盟区块链的医疗健康数据安全模型[J]. 计算机科学, 2020, 47(4): 305-311.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 伍建辉,黄中祥,李武,吴健辉,彭鑫,张生. 城市道路建设时序决策的鲁棒优化[J]. 计算机科学, 2018, 45(4): 89 -93 .
[2] 王振朝,侯欢欢,连蕊. 抑制CMT中乱序程度的路径优化方案[J]. 计算机科学, 2018, 45(4): 122 -125 .
[3] 赵利博,刘奇,付方玲,何凌. 基于小波变换和倒谱分析的腭裂高鼻音等级自动识别[J]. 计算机科学, 2018, 45(4): 278 -284 .
[4] 李珊,饶文碧. 基于视频的矿井中人体运动区域检测[J]. 计算机科学, 2018, 45(4): 291 -295 .
[5] 项英倬, 谭菊仙, 韩杰思, 石浩. 图匹配技术研究[J]. 计算机科学, 2018, 45(6): 27 -31 .
[6] 胡雅鹏, 丁维龙, 王桂玲. 一种面向异构大数据计算框架的监控及调度服务[J]. 计算机科学, 2018, 45(6): 67 -71 .
[7] 郭莹莹, 张丽平, 李松. 障碍环境中线段组最近邻查询方法研究[J]. 计算机科学, 2018, 45(6): 172 -175 .
[8] 韩朝, 苗夺谦, 任福继. 基于粗糙集理论的中文知识问答的知识谓词分析[J]. 计算机科学, 2018, 45(6): 183 -186 .
[9] 赖文星, 邓忠民. 基于支配强度的NSGA2改进算法[J]. 计算机科学, 2018, 45(6): 187 -192 .
[10] 王劲松,蔡朝晖,李永凯,刘树波. 基于用户评分差异性和相关性的协同过滤推荐算法[J]. 计算机科学, 2018, 45(5): 190 -195 .