计算机科学 ›› 2020, Vol. 47 ›› Issue (11A): 624-627.doi: 10.11896/jsjkx.191100154

• 交叉&应用 • 上一篇    下一篇

基于ICCG法的飞行器部件强度校核快速计算方法

许新鹏1, 胡斌星2   

  1. 1 上海机电工程研究所 上海 201109
    2 上海宇航系统工程研究所 上海 201109
  • 出版日期:2020-11-15 发布日期:2020-11-17
  • 通讯作者: 胡斌星(376898978@qq.com)
  • 作者简介:453341917@qq.com

Fast Calculation Method of Aircraft Component Strength Check Based on ICCG

XU Xin-peng1, HU Bin-xing2   

  1. 1 Shanghai Electro-Mechanical Engineering Institute,Shanghai 201109,China
    2 Aerospace System Engineering Shanghai,Shanghai 201109,China
  • Online:2020-11-15 Published:2020-11-17
  • About author:XU Xin-peng,M.S.His main research interests include flight dynamics,missile guidance and control system.
    HU Bin-xing,Ph.D.His main research interests include flight dynamics,software framework,parallel programming and applications.

摘要: 为满足可重复使用飞行器结构故障快速校核计算的求解要求,以GPU(Graphics Processing Unit)作为协处理器,利用其高度并行化、高显存带宽的优势完成稀疏线性方程组的加速求解。鉴于线性方程组的求解最为耗时,采用不完全Cholesky分解的共轭梯度法(ICCG)完成机翼算例的计算,在GTX1060显卡上较E3 1230V5有最高约25倍的加速比。结果表明,基于CUDA的ICCG算法能够满足至少60 000阶矩阵的飞行器有限元模型的相关计算。

关键词: CUDA, 不完全Cholesky分解, 共轭梯度法, 稀疏矩阵

Abstract: With the requirement of fast diagnosis for reusable aircraft structures,GPU is used as the coprocessor to solve the sparse linear equations with high parallelization and high memory bandwidth.In view of the most time-consuming solution ofli-near equations,the incomplete Cholesky conjugate gradient method is used to verify computing efficiency using wing as an example.The acceleration ratio of GTX1060 graphics card is about 25 times higher than that of E3 1230V5.The results show that the ICCG algorithm based on CUDA can satisfy the relevant diagnostic calculation of the finite element model of aircraft with order less than 60 000.

Key words: Conjugate gradient method, CUDA, Incomplete Cholesky, Sparse matrix

中图分类号: 

  • TP319
[1] LI J W.Modeling,Design and Analysis of Large Strap-onLaunch Vehicle's Attitude Control System[D].Graduate School of National University of Defense Technology,Changsha,Hunan,P.R.China. April,2011 .
[2] 杨超,许赟,谢长川.高超声速飞行器气动弹性力学研究综述[J].航空学报,2010,31(1):1-11.
[3] 张希彬,宗群,曾凡琳.考虑气动—推进—弹性耦合的高超声速飞行器面向控制建模与分析[J].宇航学报,2014,35(5):528-536.
[4] RAVISHANKAR B,HAFTKA R,SANKAR B.Homogenization of Integrated Thermal Protection System with Rigid Insulation Bars[C]//52nd AIAA Structures,Structural Dynamics and Materials Conference.Denver,Colorado,2012.
[5] 彭小波.可重复使用新型航天飞行器结构设计[M].北京:中国宇航出版社,2015.
[6] 周树荃,梁维泰,邓绍忠.计算方法丛书——有限元结构分析并行计算[M].北京:科学出版社,1999.
[7] 董廷星,李新亮,李森,等.GPU上计算流体力学的加速[J].计算机系统应用,2011,20(01):104-109.
[8] NGUYEN T D,SCHMIDT B,ZHENG Z,et al.Efficient andAccurate OTU Clustering with GPU-Based Sequence Alignment and Dynamic Dendrogram Cutting[J].IEEE/ACM Trans Comput Biol Bioinform,2015,12(5):1060-1073.
[9] 郑经纬,安雪晖,黄绵松.基于CUDA的大规模稀疏矩阵的PCG算法优化[J].清华大学学报(自然科学版),2014,54(8):1006-1012.
[10] ZELEWSKI A K,ZIENIUK E,KAPTURCZAK M.Accelera-tion of integration in parametric integral equations system using CUDA[J].Computers and Structures,2015,152:113-124.
[11] BARTEZZAGHI A,CREMONESI M,PAROLINI N,et al.An explicit dynamics GPU structural solver for thin shell finite elements[J].Computers & Structures,2015,154:29-40.
[12] LACERDA SILVA G R,De MEDEIROS R R,JAIMES B R A,et al.CUDA-Based Parallelization of Power Iteration Clustering for Large Datasets[J].IEEE Access,2017,5:27263-27271.
[13] 谷同祥,安恒斌,刘兴平.迭代方法和预处理技术(上册)[M].北京:科学出版社,2015.
[14] COOK S.CUDA Programming:A Developer's Guide to Parallel Computing with GPUs[M].340 Pine Street,Sixth Floor,San Francisco,CA:Morgan Kaufmann Publishers Inc.,2012.
[15] KAMEARI A.Improvement of ICCG Convergence for Thin Ele-ments in Magnetic Field Analyses Using the Finite-Element Method[J].IEEE Transactions on Magnetics,2008,44(6):1178-1181.
[16] VOLKOV V,BARBIERI D,HOGG J,et al.CUBLAS Library User Guide,v10.1th ed[OL].Santa Clara,CA:NVIDIA,2018.https://docs.nvidia.c-om/pdf/CUBLAS_Library.pdf.
[17] CHANG L W,VALERO-LARA P,MARTÍNEZ-PÉREZ I.CUSPARSE Library,v10.1th ed[OL].Santa Clara,CA:2018.https://docs.nvidia.com/pdf/CUSPARSE_Library.pdf.
[18] BELL N,GARLAND M.Efficient Sparse Matrix-Vector Multiplication on CUDA,NVR-2008-004[R].Santa Clara,CA:NVIDIA,2008.
[19] LIN S,XIE Z.A Jacobi_PCG solver for sparse linear systems on multi-GPU cluster[J].The Journal of Supercomputing,2017,73(1):433-454.
[20] SANDERS J,KANDROT E.CUDA By Example An Introduction To General-Purpose GPU Programming[M].Addison-Wesley Professional,2010:38-46.
[21] GEORGE A V,MANOJ S,GUPTE S R,et al.Thrust++:Extending Thrust Framework for Better Abstraction and Performance[C]//2017 IEEE 24th International Conference on High Performance Computing (HIPC).IEEE,2017.
[22] REAÑO C,SILLA F.On the support of inter-node P2P GPUmemory copies in rCUDA[J].Journal of Parallel and Distributed Computing,2019,127(5):28-43.
[23] FANG Y,CHEN Q.A real-time and reliable dynamic migration model for concurrent taskflow in a GPU cluster[J].Cluster Computing,2019,22(2):585-599.
[1] 汪晋, 刘江.
基于GPU的并行DILU预处理技术
GPU-based Parallel DILU Preconditioning Technique
计算机科学, 2022, 49(6): 108-118. https://doi.org/10.11896/jsjkx.210300259
[2] 胡蓉, 阳王东, 王昊天, 罗辉章, 李肯立.
基于GPU加速的并行WMD算法
Parallel WMD Algorithm Based on GPU Acceleration
计算机科学, 2021, 48(12): 24-28. https://doi.org/10.11896/jsjkx.210600213
[3] 文敏华, 汪申鹏, 韦建文, 李林颖, 张斌, 林新华.
基于DGX-2的湍流燃烧问题优化研究
DGX-2 Based Optimization of Application for Turbulent Combustion
计算机科学, 2021, 48(12): 43-48. https://doi.org/10.11896/jsjkx.201200129
[4] 汪亮, 周新志, 严华.
基于GPU的实时SIFT算法
Real-time SIFT Algorithm Based on GPU
计算机科学, 2020, 47(8): 105-111. https://doi.org/10.11896/jsjkx.190700036
[5] 郑红波, 石豪, 杜轶诚, 张美玉, 秦绪佳.
光照不均匀的结构光图像的条纹快速提取方法
Fast Stripe Extraction Method for Structured Light Images with Uneven Illumination
计算机科学, 2019, 46(5): 272-278. https://doi.org/10.11896/j.issn.1002-137X.2019.05.042
[6] 程东升,刘志勇,薛国伟,高月芳.
一种针对大波数Helmholtz方程的高性能并行预条件迭代求解算法
High-performance Parallel Preconditioned Iterative Solver for Helmholtz Equation with Large Wavenumbers
计算机科学, 2018, 45(7): 299-306. https://doi.org/10.11896/j.issn.1002-137X.2018.07.051
[7] 张劼,文敏华,林新华,孟德龙,陆豪.
基于历史模拟法的风险价值算法在GPU上的实现和优化
Implementation and Optimization of Historical VaR on GPU
计算机科学, 2018, 45(5): 291-294. https://doi.org/10.11896/j.issn.1002-137X.2018.05.050
[8] 周筠, 蒋富.
基于CUDA架构的改进Marching Cubes算法
Improved Marching Cubes Based on CUDA
计算机科学, 2018, 45(11A): 573-575.
[9] 刘端阳, 郑江帆, 沈国江, 刘志.
基于CUDA的k-means算法并行化研究
Study on Parallel K-means Algorithm Based on CUDA
计算机科学, 2018, 45(11): 292-297. https://doi.org/10.11896/j.issn.1002-137X.2018.11.047
[10] 武昱, 闫光辉, 王雅斐, 马青青, 刘宇轩.
结合GPU技术的并行CP张量分解算法
Parallel CP Tensor Decomposition Algorithm Combining with GPU Technology
计算机科学, 2018, 45(11): 298-303. https://doi.org/10.11896/j.issn.1002-137X.2018.11.048
[11] 徐启航,游安清,马社,崔云俊.
基本图像处理算法的优化过程研究
Study on Optimizations of Basic Image Processing Algorithm
计算机科学, 2017, 44(Z6): 169-172. https://doi.org/10.11896/j.issn.1002-137X.2017.6A.039
[12] 尹孟嘉,许先斌,何水兵,胡婧,叶从欢,张涛.
GPU稀疏矩阵向量乘的性能模型构造
Performance Model of Sparse Matrix Vector Multiplication on GPU
计算机科学, 2017, 44(4): 182-187. https://doi.org/10.11896/j.issn.1002-137X.2017.04.040
[13] 沈洪,李晓光.
图像显著估计的并行算法研究
Research on Parallel Algorithm of Image Saliency Estimation
计算机科学, 2017, 44(12): 266-273. https://doi.org/10.11896/j.issn.1002-137X.2017.12.048
[14] 韦博文,李涛,李广宇,汪致恒,何沐,师悦龄,刘路遥,张瑞.
使用OpenCL技术的影像快速畸变纠正方法在异构平台上的应用分析
Applied Analysis of Image Accelerating Distortion Correction of OpenCL Technology on Heterogeneous Platform
计算机科学, 2016, 43(Z11): 167-169. https://doi.org/10.11896/j.issn.1002-137X.2016.11A.036
[15] 潘茜,张育平,陈海燕.
基于CUDA的并行K-近邻连接算法实现
Implementation of Parallel K-Nearest Neighbor Join Algorithm Based on CUDA
计算机科学, 2016, 43(10): 190-192. https://doi.org/10.11896/j.issn.1002-137X.2016.10.035
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!