计算机科学 ›› 2020, Vol. 47 ›› Issue (5): 1-6.doi: 10.11896/jsjkx.191200056

• 理论计算机科学 • 上一篇    下一篇

直觉主义视角下量子逻辑的进一步解释

周恒, 王拥军, 王宝山, 燕健   

  1. 北京航空航天大学数学科学学院 北京100191
  • 收稿日期:2019-12-06 出版日期:2020-05-15 发布日期:2020-05-19
  • 通讯作者: 王拥军(wangyj@buaa.edu.cn)
  • 作者简介:zhouheng@buaa.edu.cn
  • 基金资助:
    国家自然科学基金(11871083)

Deeper Explanation of Quantum Logic in Intuitionistic Perspective

ZHOU Heng, WANG Yong-jun, WANG Bao-shan, YAN Jian   

  1. School of Mathematical Science,Beihang University,Beijing 100191,China
  • Received:2019-12-06 Online:2020-05-15 Published:2020-05-19
  • About author:ZHOU Heng,born in 1995,postgra-duate.His main research interests include theoretical computer science and logical algebra.
    WANG Yong-jun,born in 1970,associate professor.His main research interests include logical algebra,quantum logic,data mining,etc.
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(11871083)

摘要: 量子计算机将成为计算机科学未来的发展方向之一,量子逻辑是反映量子计算与量子信息的数学基础。Von Neumann用希尔伯特空间的闭子空间表示量子物理系统的性质,构成正交模格,其元素有明确的物理意义,但无法刻画叠加性质;Bob Coecke填加析取元素来表示叠加性质,借助Heyting代数,基于正交模格构造命题格对量子逻辑进行刻画,命题格中元素有明确的数学含义,但物理意义不够明确。针对后者,文中对命题格中元素的物理含义做出了进一步的解释,认为补充的析取元素代表的物理意义为描述叠加性质时所依赖的“观察者视角”,使得命题格中所有元素都获得了清晰的物理含义,通过阐述量子逻辑在测量时的应用,为量子计算中的隐形传态、超距同步等技术提供了重要的理论依据。

关键词: 量子计算机, 叠加性质, 直觉主义逻辑, 析取元素, 观察者视角, 测量

Abstract: Quantum computer is becoming one of ongoing research direction of computer science.Quantum logic is the mathemati-cal foundation of quantum computation and quantum information.Von Neumann represented properties of quantum physical systems by closed subspaces of Hilbert space,thus constituting orthomodular lattice.Elements of orthomodular lattice own definite physical understanding but lack of the ability to describe superposition.Therefore,Bob Coecke constructed propositional lattice with Heyting algebra by adding disjunction elements for superposition.Elements of propositional lattice own definite mathematical meaning but lack of physical understanding.For latter,this paper gives a deeper explanation about physical understanding of elements of propositional lattice.As our viewpoint,the added disjunction elements represent “observer perspective”,which is required while depicting superposition in propositional lattice.Thus,by applying quantum logic on measurement operation,all elements of propositional lattice are given definite physical understanding and provide theoretical basis for quantum teleportation and action at distance.

Key words: Quantum computer, Superposition, Intuitionistic perspective, Disjunction element, Observer perspective, Measurement

中图分类号: 

  • O142
[1] ARUTE F,ARYA K,BABBUSH R,et al.Quantum supremacy using a programmable superconducting processor[J].Nature,2019,574:505-510.
[2] SHEN J,GUI Q Q.Quantum Logic:A Brand New Logic Construction [J].Journal of Anhui University (Philosophy and Social Sciences),2011,35(1):51-58.
[3] BIRKHOFF G,NEUMANN J V.The Logic of Quantum Mechanics[J].The Annals of Mathematics,1936,37(4):823-843.
[4] HARDEGREE G M.The Conditional in Quantum Logic[J].Synthese,1974,29(1):63-80.
[5] KALMBACH G.Orthomodular Lattices[M].London:Academic Press,Inc.[Harcourt Brace Jovanovich,Publishers],1983.
[6] GOLDBLATT R.Orthomodularity is not Elementary[J].Journal of Symbolic Logic,1984,49(2):401-404.
[7] MALINOWSKI J.The Deduction Theorem for Quantum Logic--Some Negative Results[J].The Journal of Symbolic Logic,1990,55(2):615-625.
[8] MOORE D J.Quantum logic requires weak modularity[J].Helvetica Physica Acta,1993(5).
[9] COECKE B.Quantum Logic in Intuitionistic Perspective[J].Studia Logica:An International Journal for Symbolic Logic,2002,70(3):411-440.
[10] COECKE B,SMETS S.The Sasaki Hook Is Not a [Static].Implicative Connective but Induces a Backward [in Time].DynamicOne That Assigns Causes[J].International Journal of Theoretical Physics,2004,43(7/8):1705-1736.
[11] GEHRKE M,HARDING J,VENEMA Y.MacNeille completions and canonical extensions[J].Transactions of the American Mathematical Society,2006,358(2):573-590.
[12] BELLAC M L,JAEGER G.A Short Introduction to Quantum Information and Quantum Computation[J].Physics Today,2007,60(5):64.
[13] RUSSO C.Quantale Modules and their Operators,with Applications[J].Journal of Logic & Computation,2010,20(4):917-946.
[14] ABRAMSKY S,TZEVELEKOS N.Introduction to Categoriesand Categorical Logic[J].Lecture Notes in Physics,2011,813(1).
[15] SHI H,WANG B S,WU M H.Distributive Law in Deduction Mechanism of Logic [J].Computer Science,2016,43(S1):21-24.
[1] 卢爱红, 郭艳, 李宁, 王萌, 刘杰. 基于原子范数最小化的二维稀疏阵列波达角估计算法[J]. 计算机科学, 2020, 47(5): 271-276.
[2] 杜流云, 郑智捷, 郑华仙. 厚壁菌门下两类细菌的DNA全序列可视化研究[J]. 计算机科学, 2020, 47(11A): 192-195.
[3] 赵茜, 陈曙晖. 基于LRBG方法的IP定位研究[J]. 计算机科学, 2020, 47(11A): 291-295.
[4] 许锋, 孙洁, 刘世杰. 基于遗传算法的声场重构测量优化方法[J]. 计算机科学, 2020, 47(11): 304-309.
[5] 李孟君, 黎文伟. 基于视觉特性的手机屏幕亮度自适应调节算法[J]. 计算机科学, 2019, 46(2): 255-260.
[6] 杨思星, 郭艳, 李宁, 孙保明, 钱鹏. 基于数据融合的压缩感知多目标定位算法[J]. 计算机科学, 2018, 45(9): 161-165.
[7] 郭艳,杨思星,李宁,孙保明,钱鹏. 非基于测距的压缩感知多测量向量目标定位[J]. 计算机科学, 2018, 45(7): 99-103.
[8] 朱均超,王坦,张宝峰. 汽车喷油器噪声测量系统的设计[J]. 计算机科学, 2018, 45(6A): 576-579.
[9] 赵培海, 王咪咪. 基于三维行为关系图的模型一致性检测方法[J]. 计算机科学, 2018, 45(6): 156-160.
[10] 蔡体健,樊晓平,陈志杰,廖志芳. 非共享多测量向量的稀疏表示分类模型[J]. 计算机科学, 2018, 45(3): 258-262.
[11] 姚洪迪,邹海. 量子多重代理盲签名协议[J]. 计算机科学, 2017, 44(7): 104-106.
[12] 李阳,蔡志平,夏竟. 一种SDN网络路径异常监控方法[J]. 计算机科学, 2017, 44(7): 25-30.
[13] 王淋,何坤金,陈正鸣. 基于模板的骨骼参数自动测量方法[J]. 计算机科学, 2017, 44(6): 270-273.
[14] 袁晓敏,刘文杰,刘琦,鲁锦伸. 基于EPR对的任意四粒子Cluster类态全概率联合远程制备[J]. 计算机科学, 2017, 44(3): 153-157.
[15] 乔焰,焦俊,饶元. 基于数据中心流量特征的端到端流量估计算法[J]. 计算机科学, 2017, 44(2): 171-175.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 雷丽晖,王静. 可能性测度下的LTL模型检测并行化研究[J]. 计算机科学, 2018, 45(4): 71 -75 .
[2] 孙启,金燕,何琨,徐凌轩. 用于求解混合车辆路径问题的混合进化算法[J]. 计算机科学, 2018, 45(4): 76 -82 .
[3] 张佳男,肖鸣宇. 带权混合支配问题的近似算法研究[J]. 计算机科学, 2018, 45(4): 83 -88 .
[4] 伍建辉,黄中祥,李武,吴健辉,彭鑫,张生. 城市道路建设时序决策的鲁棒优化[J]. 计算机科学, 2018, 45(4): 89 -93 .
[5] 史雯隽,武继刚,罗裕春. 针对移动云计算任务迁移的快速高效调度算法[J]. 计算机科学, 2018, 45(4): 94 -99 .
[6] 周燕萍,业巧林. 基于L1-范数距离的最小二乘对支持向量机[J]. 计算机科学, 2018, 45(4): 100 -105 .
[7] 刘博艺,唐湘滟,程杰仁. 基于多生长时期模板匹配的玉米螟识别方法[J]. 计算机科学, 2018, 45(4): 106 -111 .
[8] 耿海军,施新刚,王之梁,尹霞,尹少平. 基于有向无环图的互联网域内节能路由算法[J]. 计算机科学, 2018, 45(4): 112 -116 .
[9] 崔琼,李建华,王宏,南明莉. 基于节点修复的网络化指挥信息系统弹性分析模型[J]. 计算机科学, 2018, 45(4): 117 -121 .
[10] 王振朝,侯欢欢,连蕊. 抑制CMT中乱序程度的路径优化方案[J]. 计算机科学, 2018, 45(4): 122 -125 .