计算机科学 ›› 2020, Vol. 47 ›› Issue (10): 91-96.doi: 10.11896/jsjkx.200100001

所属专题: 大数据&数据科学 虚拟专题

• 数据库&大数据&数据科学 • 上一篇    下一篇

基于时空数据的城市人流移动模式挖掘

孙天旭1, 赵蕴龙1,2, 练作为1, 孙毅1, 蔡月啸1   

  1. 1 南京航空航天大学计算机科学与技术学院 南京211106
    2 软件新技术与产业化协同创新中心 南京210023
  • 收稿日期:2020-01-02 修回日期:2020-05-16 出版日期:2020-10-15 发布日期:2020-10-16
  • 通讯作者: 赵蕴龙(zhaoyunlong@nuaa.edu.cn)
  • 作者简介:sun29@nuaa.edu.cn
  • 基金资助:
    国防基础科研计划资助(JCKY2016605B006);江苏省“六大人才高峰”高层次人才(XYDXXJS-031)

Mobility Pattern Mining for People Flow Based on Spatio-Temporal Data

SUN Tian-xu1, ZHAO Yun-long1,2, LIAN Zuo-wei1, SUN Yi1, CAI Yue-xiao1   

  1. 1 College of Computer Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China
    2 Collaborative Innovation Center of Novel Software Technology and Industrialization,Nanjing 210023,China
  • Received:2020-01-02 Revised:2020-05-16 Online:2020-10-15 Published:2020-10-16
  • About author:SUN Tian-xu,born in 1995,M.S.candidate,is a member of China Computer Federation.His main research interests include urban computing and pervasive computing.
    ZHAO Yun-long,born in 1975,Ph.D,professor,is a member of China Computer Federation.His main research interests include wireless network,collective computing,pervasive computing,data mining,wearable computing,etc.
  • Supported by:
    National Defense Basic Scientific Research Program of China (JCKY2016605B006) and Six Talent Peaks Project in Jiangsu Province (XYDXXJS-031)

摘要: 随着城市的快速发展,城市中人流的管理与移动模式挖掘变得越发重要。同时,随着以群智感知为代表的各种感知技术的发展,提出了智慧城市的概念,智慧城市中的大量感知数据为人流的分析提供了可能性。在智慧城市中,时空数据是最为常见的一种数据。本文基于城市中的时空数据,首先提出一种建模方法,将不同种类的时空数据表示为人流模型;然后基于聚类的思想,通过改进传统的基于密度的聚类算法来对人流的移动模式进行挖掘,提出一种人流的移动模式聚类算法:时空密度聚类(Spatio-Temporal Density-Based Spatial Clustering of Applications with Noise,ST-DBSCAN);接着设计了一个移动模式的交通应用场景,并提出对移动模式的评价方法;最后在中国某城市的真实数据集上进行实验与分析,结果表明本文得到的移动模式结果在统一交通服务的场景下可节省25%的交通成本,验证了本文所提移动模式的有效性。

关键词: 城市人流, 时空数据, 数据挖掘, 移动模式, 智慧城市

Abstract: With the accelerating urbanization of many countries,managing people flow and mining mobility patterns become more and more important.Simultaneously,with the development of information technology,especially mobile crowd sensing,the concept of smart city is proposed by many scholars,sensing data in smart cities also provides the possibility for analysis of people flow.In smart city,spatio-temporal data is the most common data.Based on the spatio-temporal data,this paper proposes a modeling method to represent different kinds of spatio-temporal data as people flow model.Then,based on the thinking of clustering,this paper mines mobility pattern from people flow by an improved density-based clustering algorithm,designs a transportation application in smart city,and proposes a method for evaluating the effectiveness of mobility pattern.Finally,experimenting on a real dataset of a city in China and analyzing the results.The results show that the mobility pattern obtained in this paper can reduce costs by 25% in the transportation application of smart city,verifying the effectiveness of the mobility pattern.

Key words: Data mining, Mobility pattern, People flow, Smart city, Spatio-Temporal data

中图分类号: 

  • TP311.13
[1]ITOH M,YOKOYAMA D,TOYODA M,et al.Visual Exploration of Changes in Passenger Flows and Tweets on Mega-City Metro Network[J].IEEE Transactions on Big Data,2016,2(1):85-99.
[2]ALESSANDRINI A,GIOIA C,SERMI F,et al.WiFi positioning and Big Data to monitor flows of people on a wide scale[C]//2017 European Navigation Conference (ENC).IEEE,2017.
[3]JING Y,YU Z,XING X.Discovering regions of different functions in a city using human mobility and POIs[C]//18th SIGKDD conference on Knowledge Discovery and Data Mining.
[4]LYU Y,CHOW C Y,VICTOR C,S,et al.T2CBS:Mining Taxi Trajectories for Customized Bus Systems[C]//Computer Communications Workshops.IEEE,2016.
[5]ZHANG J,ZHENG Y,QI D.DeepSpatio-Temporal ResidualNetworks for Citywide Crowd Flows Prediction[C]//Procee-dings of the Thirty-First AAAI Conference on Artificial Intelligence.AAAI Press,2017:1655-1661.
[6]HASHEM I A T,CHANG V,ANUAR N B,et al.The role of big data in smart city[J].International Journal of Information Management,2016,36(5):748-758.
[7]STEENBRUGGEN J,TRANOS E,NIJKAMP P.Data frommobile phone operators[M].Oxford:Pergamon Press,2015,39(3):335-346.
[8]DEMISSIE M G,PHITHAKKITNUKOON S,KATTAN L.Trip Distribution Modeling Using Mobile Phone Data:Emphasis on Intra-Zonal Trips[J].IEEE Transactions on Intelligent Transportation Systems,2018,20(7):2605-2617.
[9]DEMISSIE M G,PHITHAKKITNUKOON S,SUKHVIBULT,et al.Inferring Passenger Travel Demand to Improve Urban Mobility in Developing Countries Using Cell Phone Data:A Case
Study of Senegal[J].IEEE Transactions on Intelligent Transportation Systems,2016,17(9):2466-2478.
[10]FEI X,GKOUNTOUNA O.Spatio temporal clustering in urban transportation:a bus route case study in Washington D.C[J].Sigspatial Special,2018,10(2):26-33.
[11]ZHENG Y.Trajectory data mining:an overview[J].ACM Trans-actions on Intelligent Systems and Technology (TIST),2015,6(3):29.
[12]LIU Z C,YU J B,XIONG W T,et al.Using mobile phone data to explore spatial-temporal evolution of home-based daily mobi-lity patterns in Shanghai[C]//International Conference on Behavioral,Economic and Socio-Cultural Computing (BESC).IEEE,2016.
[13]YABE T,TSUBOUCHI K,SEKIMOTO Y.CityFlowFragility:Measuring the Fragility of People Flow in Cities to Disasters using GPS Data Collected from Smartphones[J].Proceedings of the ACM on Interactive,Mobile,Wearable and Ubiquitous Technologies,2017,1(3):1-17.
[14]DO C X,TSUKAI M.Exploring Potential Use of Mobile Phone Data Resource to Analyze Inter-regional Travel Patterns in Japan [M]//Data Mining and Big Data.2017:314-325.
[15]LI Y,BAO J,LI Y,et al.Mining the Most Influential k -Location Set from Massive Trajectories[J].IEEE Transactions on Big Data,2017,4(4):556-570.
[16]LIAN J,LI Y,GU W,et al.Joint Mobility Pattern Mining with Urban Region Partitions[C]//Proceedings of the 15th EAI International Conference on Mobile and Ubiquitous Systems:Computing,Networking and Services.ACM,2018:362-371.
[17]LIU T,CEDER A A.Analysis of a new public-transport-service concept:Customized bus in China[J].Transport Policy,2015,39:63-76.
[18]MA S,ZHENG Y,WOLFSON O.Real-Time City-Scale TaxiRidesharing[J].IEEE Transactions on Knowledge and Data Engineering,2015,27(7):1782-1795.
[1] 黎嵘繁, 钟婷, 吴劲, 周帆, 匡平.
基于时空注意力克里金的边坡形变数据插值方法
Spatio-Temporal Attention-based Kriging for Land Deformation Data Interpolation
计算机科学, 2022, 49(8): 33-39. https://doi.org/10.11896/jsjkx.210600161
[2] 么晓明, 丁世昌, 赵涛, 黄宏, 罗家德, 傅晓明.
大数据驱动的社会经济地位分析研究综述
Big Data-driven Based Socioeconomic Status Analysis:A Survey
计算机科学, 2022, 49(4): 80-87. https://doi.org/10.11896/jsjkx.211100014
[3] 孔钰婷, 谭富祥, 赵鑫, 张正航, 白璐, 钱育蓉.
基于差分隐私的K-means算法优化研究综述
Review of K-means Algorithm Optimization Based on Differential Privacy
计算机科学, 2022, 49(2): 162-173. https://doi.org/10.11896/jsjkx.201200008
[4] 王如斌, 李瑞远, 何华均, 刘通, 李天瑞.
面向海量空间数据的分布式距离连接算法
Distributed Distance Join Algorithm for Massive Spatial Data
计算机科学, 2022, 49(1): 95-100. https://doi.org/10.11896/jsjkx.210100060
[5] 张亚迪, 孙悦, 刘锋, 朱二周.
结合密度参数与中心替换的改进K-means算法及新聚类有效性指标研究
Study on Density Parameter and Center-Replacement Combined K-means and New Clustering Validity Index
计算机科学, 2022, 49(1): 121-132. https://doi.org/10.11896/jsjkx.201100148
[6] 马董, 李新源, 陈红梅, 肖清.
星型高影响的空间co-location模式挖掘
Mining Spatial co-location Patterns with Star High Influence
计算机科学, 2022, 49(1): 166-174. https://doi.org/10.11896/jsjkx.201000186
[7] 宋龙泽, 万怀宇, 郭晟楠, 林友芳.
面向出租车空载时间预测的多任务时空图卷积网络
Multi-task Spatial-Temporal Graph Convolutional Network for Taxi Idle Time Prediction
计算机科学, 2021, 48(7): 112-117. https://doi.org/10.11896/jsjkx.201000089
[8] 徐慧慧, 晏华.
基于相对危险度的儿童先心病风险因素分析算法
Relative Risk Degree Based Risk Factor Analysis Algorithm for Congenital Heart Disease in Children
计算机科学, 2021, 48(6): 210-214. https://doi.org/10.11896/jsjkx.200500082
[9] 张岩金, 白亮.
一种基于符号关系图的快速符号数据聚类算法
Fast Symbolic Data Clustering Algorithm Based on Symbolic Relation Graph
计算机科学, 2021, 48(4): 111-116. https://doi.org/10.11896/jsjkx.200800011
[10] 张寒烁, 杨冬菊.
基于关系图谱的科技数据分析算法
Technology Data Analysis Algorithm Based on Relational Graph
计算机科学, 2021, 48(3): 174-179. https://doi.org/10.11896/jsjkx.191200154
[11] 邹承明, 陈德.
高维大数据分析的无监督异常检测方法
Unsupervised Anomaly Detection Method for High-dimensional Big Data Analysis
计算机科学, 2021, 48(2): 121-127. https://doi.org/10.11896/jsjkx.191100141
[12] 李浩, 王飞, 谢思宇, 寇勇奇, 张兰, 杨兵, 康雁.
一种基于改进图波网的双重自回归分量交通预测模型
Dual Autoregressive Components Traffic Prediction Based on Improved Graph WaveNet
计算机科学, 2021, 48(11A): 159-165. https://doi.org/10.11896/jsjkx.201200051
[13] 刘新斌, 王丽珍, 周丽华.
MLCPM-UC:一种基于模式实例分布均匀系数的多级co-location模式挖掘算法
MLCPM-UC:A Multi-level Co-location Pattern Mining Algorithm Based on Uniform Coefficient of Pattern Instance Distribution
计算机科学, 2021, 48(11): 208-218. https://doi.org/10.11896/jsjkx.201000097
[14] 刘晓楠, 宋慧超, 王洪, 江舵, 安家乐.
Grover算法改进与应用综述
Survey on Improvement and Application of Grover Algorithm
计算机科学, 2021, 48(10): 315-323. https://doi.org/10.11896/jsjkx.201100141
[15] 张煜, 陆亿红, 黄德才.
基于密度峰值的加权犹豫模糊聚类算法
Weighted Hesitant Fuzzy Clustering Based on Density Peaks
计算机科学, 2021, 48(1): 145-151. https://doi.org/10.11896/jsjkx.200400043
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!