计算机科学 ›› 2020, Vol. 47 ›› Issue (8): 93-97.doi: 10.11896/jsjkx.200300015

所属专题: 高性能计算

• 高性能计算 • 上一篇    下一篇

基于申威26010处理器的大规模量子傅里叶变换模拟

刘晓楠1, 荆丽娜2, 王立新1, 王美玲1   

  1. 1 信息工程大学网络空间安全学院 郑州 450000
    2 郑州大学中原网络安全研究院 郑州 450000
  • 出版日期:2020-08-15 发布日期:2020-08-10
  • 通讯作者: 荆丽娜(1667500346@qq.com)
  • 作者简介:prof.liu.xn@foxmail.com
  • 基金资助:
    国家自然科学基金项目(61972413, 61701539)

Large-scale Quantum Fourier Transform Simulation Based on SW26010

LIU Xiao-nan1, JING Li-na2, WANG Li-xin1, WANG Mei-ling1,   

  1. 1 Department of Cyberspace Security Academy, Information Engineering University, Zhengzhou 450000, China
    2 School of Zhongyuan Cyber Security Institute, Zhengzhou University, Zhengzhou 450000, China
  • Online:2020-08-15 Published:2020-08-10
  • About author:LIU Xiao-nan, born in 1977, Ph.D, associate professor, master’s supervisor, is a member of China omputer Federation.His main research interests include quantum algorithm, high-performance parallel computation.
    JING Li-na, born in 1996, postgra-duate, is a member of China Computer Federation.Her main research interests include quantum algorithm and so on.
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(61972413, 61701539).

摘要: 量子计算由于其纠缠性和叠加性具有天然的并行优势, 然而目前的量子计算设备受限于物理实现的工艺水平, 距离可发挥巨大计算能力并解决有现实意义的实际问题还需要一定时间的技术积累和突破。因此, 采用经典计算机对量子计算进行模拟成为验证量子算法的有效途径。量子傅里叶变换(Quantum Fourier Transform, QFT)是许多量子算法的关键组成部分, 它涉及相位估计、求阶、因子等问题。对量子傅里叶变换的研究和大规模模拟实现, 可以有效促进相关量子算法的研究、验证以及优化。文中使用我国自主研发的超级计算机——“神威·太湖之光”对大规模量子傅里叶变换进行模拟, 并根据申威26010处理器异构并行的特点, 采用MPI、加速线程库以及通信与计算隐藏技术进行优化。通过Shor算法中求解周期部分的运算来验证量子傅里叶变换模拟的正确性, 实现了46位量子比特QFT算法的模拟和优化, 为其他量子算法在超算平台上的验证优化以及新量子算法的提出提供了参考。

关键词: MPI, Shor算法, 加速线程库, 量子傅里叶变换, 申威26010

Abstract: Quantum computing has a natural parallel advantage due to its entanglement and superposition.However, current quantum computing equipment is limited to the technological level of physical realization.It takes a certain amount of time to accumulate and break through to achieve huge computing power and solve practical problems with practical significance.Therefore, using classical computers to simulate quantum computing has become an effective way to verify quantum algorithms.Quantum Fourier Transform is a key part of many quantum algorithms.It involves phase estimation, order finding, factors, etc.Research on Quantum Fourier Transform and large-scale simulation implementation can effectively promote the research, verification and optimization of related quantum algorithms.In this paper, a large-scale Quantum Fourier Transform is simulated using the supercomputer, “Sunway TaihuLight”, independently developed by our country.According to the heterogeneous parallel characteristics of SW26010 processor, MPI, accelerated thread library, and communication and computing hiding technology are adopted to optimize the system.The correctness of the Quantum Fourier Transform simulation is verified by seeking the period in the Shor algorithm, and the simulation and optimization of the Quantum Fourier Transform of 46-Qubits are realized, which provides reference for the verification and optimization of other quantum algorithms on the supercomputing platform and the proposal of new quantum algorithms.

Key words: Accelerated thread library, MPI, Quantum fourier transform, Shor algorithm, SW26010

中图分类号: 

  • TP385
[1] WECKER D, SVORE K M.LIQUi|>:A software design architecture and domain-specific language for quantum computing[J].arXiv:1402.4467, 2014.
[2] HONG W J, LI K L, QUAN Z, et al.PETSc’s Heterogeneous Parallel Algorithm Design andPerformance Optimization on the Sunway TaihuLight System [J].Chinese Journal of Computers, 2017, 40(9):2057-2069.
[3] MIAO X.Universal construction of unitary transformation ofquantum computation with one-and two-body interactions[J].arXiv preprint quant-ph/0003068, 2000.
[4] TAHO X H, PANG J M, GAO W, et al.Performance Optimization of FT Program Based on SW26010 Processor[J].Computer Science, 2019, 46(4):321-328.
[5] LI R L, WU B J, YING M S, et al.Quantum Supremacy Circuit Simulation on Sunway TaihuLight[J].arXiv:1804.04797.
[6]HNER T.Steiger D S.0.5 petabyte simulation of a 45-qubit quantum circuit∥International Conference for High Performance Computing.2017.
[7]LIU X, GUO H, SUN R J, et al.The Characteristic Analysis and Exascale Scalability Research of Large Scale Parallel Applications on Sunway TaihuLight Supercomputer[J].Journal of Computer, 2018, 14(10):2209-2220.
[8]WANG Y H, ZHANG H G, WU W Q, et al.Quantum Algo-rithms for Breaking RSA Based on Phase Estimation and EquationSolving[J].Journal of Computer, 2017, 40(12):2688-2699.
[9]WANG M Q, LI M, ZHANG Q, et al.Speedup of GMRES Based on MIC Heterogeneous Cluster Platform[J].Computer Science, 2017, 44(4):197-201, 240.
[10]WANG K M.Parallelism of Quantum Computing and its Philosophical Significance [D].Taiyuan:Shanxi University, 2008:669-677.
[1] 冯雁, 王蕊聪.
基于量子傅里叶变换求和的量子投票协议
Quantum Voting Protocol Based on Quantum Fourier Transform Summation
计算机科学, 2022, 49(5): 311-317. https://doi.org/10.11896/jsjkx.210300058
[2] 刘江, 刘文博, 张矩.
OpenFoam中多面体网格生成的MPI+OpenMP混合并行方法
Hybrid MPI+OpenMP Parallel Method on Polyhedral Grid Generation in OpenFoam
计算机科学, 2022, 49(3): 3-10. https://doi.org/10.11896/jsjkx.210700060
[3] 宋慧超, 刘晓楠, 王洪, 尹美娟, 江舵.
基于Grover搜索算法的整数分解
Integer Decomposition Based on Grover Search Algorithm
计算机科学, 2021, 48(4): 20-25. https://doi.org/10.11896/jsjkx.200800117
[4] 谢景明, 胡伟方, 韩林, 赵荣彩, 荆丽娜.
基于“嵩山”超级计算机系统的量子傅里叶变换模拟
Quantum Fourier Transform Simulation Based on “Songshan” Supercomputer System
计算机科学, 2021, 48(12): 36-42. https://doi.org/10.11896/jsjkx.201200023
[5] 蒋化南, 张帅, 林宇斐, 李豪.
基于MPI的分布式并行Gazebo仿真优化与测试
Simulation Optimization and Testing Based on Gazebo of MPI Distributed Parallelism
计算机科学, 2021, 48(11A): 672-677. https://doi.org/10.11896/jsjkx.210100109
[6] 郭杰, 高希然, 陈莉, 傅游, 刘颖.
用数据驱动的编程模型并行多重网格应用
Parallelizing Multigrid Application Using Data-driven Programming Model
计算机科学, 2020, 47(8): 32-40. https://doi.org/10.11896/jsjkx.200500093
[7] 姚庆, 郑凯, 刘垚, 王肃, 孙军, 徐梦轩.
SOM算法在申威众核上的实现和优化
Implementation and Optimization of SOM Algorithm on Sunway Many-core Processors
计算机科学, 2018, 45(11A): 591-596.
[8] 周杰,李文敬.
基于三层混合编程模型的Petri网并行算法研究
Research on Parallel Algorithm of Petri Net Based on Three-layer Mixed Programming Model
计算机科学, 2017, 44(Z11): 586-591. https://doi.org/10.11896/j.issn.1002-137X.2017.11A.126
[9] 王明清,李明,张清,张广勇,吴韶华.
基于MIC集群平台的GMRES算法并行加速
Speedup of GMRES Based on MIC Heterogeneous Cluster Platform
计算机科学, 2017, 44(4): 197-201. https://doi.org/10.11896/j.issn.1002-137X.2017.04.043
[10] 唐兵,Laurent BOBELIN,贺海武.
基于MPI和OpenMP混合编程的非负矩阵分解并行算法
Parallel Algorithm of Nonnegative Matrix Factorization Based on Hybrid MPI and OpenMP Programming Model
计算机科学, 2017, 44(3): 51-54. https://doi.org/10.11896/j.issn.1002-137X.2017.03.013
[11] 余莹,李肯立,郑光勇.
一种基于GPU集群的深度优先并行算法设计与实现
Implementation of Depth First Search Parallel Algorithm on Cluster of GPUs
计算机科学, 2015, 42(1): 82-85. https://doi.org/10.11896/j.issn.1002-137X.2015.01.019
[12] 王文义,王春霞,王杰.
基于CMP多核集群的混合并行编程技术研究
Research on Hybrid Parallel Programming Technique Based on CMP Multi-cure Cluster
计算机科学, 2014, 41(2): 19-22.
[13] 万金梁,宋金宝,叶龙,李淑红.
实时图像纹理替换算法
Real-time Image Texture Substitution Algorithm
计算机科学, 2013, 40(9): 288-292.
[14] 詹 科,王 靖,袁 良,张云泉.
基于MPI和CUDA的蛋白质定量软件的设计和分析
Design and Analysis of Protein Quantification Software Based on MPI and CUDA
计算机科学, 2013, 40(3): 36-37.
[15] 赵鑫业 唐帅 杨妹 黄柯棣.
基于赋时影响网的模拟退火与粒子群混合改进算法
Hybrid Algorithm Based on Particle Swarm Optimization and Simulated in Timed Influence Nets
计算机科学, 2012, 39(Z11): 63-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!