计算机科学 ›› 2021, Vol. 48 ›› Issue (6): 153-158.doi: 10.11896/jsjkx.200500005

• 计算机图形学&多媒体 • 上一篇    下一篇

基于9轴姿态传感器的CNN旗语动作识别方法

钟岳, 方虎生, 张国玉, 王钊, 朱经纬   

  1. 陆军工程大学野战工程学院 南京210042
  • 收稿日期:2020-05-06 修回日期:2020-08-06 出版日期:2021-06-15 发布日期:2021-06-03
  • 通讯作者: 方虎生(fhssxxll@sohu.com)
  • 基金资助:
    国家重点研发计划(2016YFC0802904);国家自然科学基金(61671470)

Method of CNN Flag Movement Recognition Based on 9-axis Attitude Sensor

ZHONG Yue, FANG Hu-sheng, ZHANG Guo-yu, WANG Zhao, ZHU Jing-wei   

  1. College of Field Engineering,Army Engineering University of PLA,Nanjing 210042,China
  • Received:2020-05-06 Revised:2020-08-06 Online:2021-06-15 Published:2021-06-03
  • About author:ZHONG Yue,born in 1996,postgra-duate.His main research interests include artificial intelligence and pattern recognition.(1286486130@qq.com)
    FANG Hu-sheng,born in 1979,Ph.D,associate professor,is a member of China Computer Federation.His main research interests include computer technology and so on.
  • Supported by:
    National Key R&D Program of China(2016YFC0802904) and National Natural Science Foundation of China(61671470).

摘要: 区别于传统光纤传感器、图像识别和Kinect深度图像的旗语动作识别方法,提出了一种基于9轴姿态传感器的旗语动作识别方法。该方法通过佩戴在手腕处的9轴姿态传感器来采集旗语动作的3轴加速度、3轴角速度以及3轴磁偏角数据;在运用卷积神经网络(Convolutional Neural Network,CNN)分类模型的基础上对其中的数据进行预处理,并通过分类识别算法对其进行改进;在数据预处理阶段,利用小波分解与重构函数对采集到的9轴数据进行高频去噪和低频信息提取,通过时间序列加窗进行分割处理,对各动作样本进行维度和长度统一;在特征提取阶段,采用构建的双卷积层、单池化层、单全连接层网络模型对重构数据进行特征提取;在分类识别阶段,提出一种CrossEntropy-Logistic联合损失函数来对5种动作进行迭代训练。实验结果表明,所提方法利用detcoef小波分解与重构函数对信号进行低频细节系数提取并采用一维CNN对降噪后的数据进行特征提取,通过CL联合损失函数对预测损失值和预测概率进行融合,分析所得到的训练准确率与测试准确率,在与各类方法的对比中取得了最高值,其平均训练识别率可达99%以上,测试准确率可达94%。

关键词: 9轴姿态传感器, CrossEntropy-Logistic, 卷积神经网络, 旗语动作识别, 小波分解与重构

Abstract: Different from the traditional method of flag movement recognition of optical fiber sensor,image recognition and kinect depth image,this paper proposes a method of flag movement recognition based on 9-axis attitude sensor.The data of 3-axis acce-leration,3-axis angular velocity and 3-axis magnetic decrement are collected by wearing a 9-axis attitude sensor at the wrist;based on the CNN classification model,the algorithm of data preprocessing and classification recognition is improved;in the data preprocessing stage,the wavelet decomposition and reconstruction functions are used to carry out the high-frequency denoising and low-frequency information extraction of the collected 9-axis data,and the dimension and the length of each action sample are unified through time series windowing and segmentation;in the feature extraction stage,the constructed network models of double convolution layer,single pooling layer and single full connection layer are used to extract the features of the reconstructed data;in the stage of classification and recognition,a CrossEntropy-Logistic joint loss function is proposed to carry out iterative training for 5 actions.The experimental results show that the use of wavelet decomposition and reconstruction detcoef function coefficient of low frequency detail of signals is extracted by using one-dimensional CNN data feature extraction.The training and testing accuracy obtained by the fusion analysis of the predicted loss value and the predicted probability through CL joint loss function is the highest in comparison with various methods.The average training recognition rate can reach more than 99% and the testing accuracy can reach 94%.

Key words: 9-axis attitude sensor, CNN, CrossEntropy-Logistic, Flag action recognition, Wavelet decomposition and reconstruction

中图分类号: 

  • TP212.9
[1]ZHANG J L,WANG L L,RUI T,et al.Flag Language Recognition System Based on ANN [J].Journal of PLA University of Science and Technology(Natural Science),2003(4):65-68.
[2]LI P F.The Research of Action Recognition based on Kinect and Application of Semaphore Training[D].Chengdu:Southwest Jiaotong University,2015.
[3]REZAIE H,GHASSEMIAN M.An Adaptive algorithm to improve energy efficiency in Wearable activity recognition systems[J].IEEE Sensors Journal,2017,17(16):5315-5323.
[4]MA C M,ZHU Q,WANG S,et al.Representation learning fromtime labelled heterogeneous data for mobile crowdsensing[J].Mobile Information Systems,2016,306:22-30.
[5]KIM K,CHO Y K.Effective inertial sensor quantity and loca-tions on a body for deep learning-based worker’s motion recognition[J].Automation in Construction,2020,113:27-40.
[6]NGUYEN N D,TRUONG P H,JEONG G M.Daily wrist acti-vity classification using a smart band[J].Physiological Measurement,2017,38(9):10-16.
[7]SIDDHARTH,SHEKAR,CHEN C.Wavelet denoising of high-bandwidth nanopore and ion channel signals[J].Nano Letters,2019,2:1090-1097.
[8]ZHE S,WEI N J.Based on Wavelet Decomposition and Reconstruction Method in Extraction of In-seam Reflection Signal[J].Coal Technology,2019,38(12):55-57.
[9]LI J J,YU J P,TAO J.Review of One-Dimensional SignalWavelet De-Noising[J].Journal of Chongqing University of Technology(Natural Science),2016(12):93-89.
[10]YANG J B,NGUYEN M N,SAN P P,et al.Deep Convolutional neural networks on multichannel time series for human activity recognition[C]//International Conference on Artificial Intelligence.2015:3995-4001.
[11]ZHANG Z,SABUNCU M R.Generalized Cross Entropy Loss for Training Deep Neural Networks with Noisy Labels[C]//32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.2018,11:155-168.
[12]LI Z,KAMNITSAS K,GLOCKER B.Overfitting of neural nets under class imbalance:Analysis and improvements for segmentation[J].arXiv:1907.10982,2019.
[13]ZHANG X Y,YOU M Y,ZHU J,et al.Face Recognition of Small-Scale Dataset Based on Joint Loss Functions[J].Transactions of Beijing Institute of Technology,2020,40(2):163-168.
[14]BOSMAN A S,ENGELBRECHT A,HELBIG M.Visualisingbasins of attraction for the cross-entropy and the squared error neural network loss functions[J].Neurocomputing,2020,400:113-136.
[15]NGUYEN-VUONG Q T,GHAMRI-DOUDANE Y,AGOUL-MINE N.On utility models for access network selection in wireless heterogeneous networks[C]//Processings of Network Ope-rations and Management Symposium 2008.Salvador:IEEE,2001:144-151.
[16]ZOU X H.Data classification based on Logistic regression[J].Intelligent Computer and Applications,2016,6(6):139-140,143.
[17]MEIGNAN D,KNUST S.A neutrality-based iterated localsearch for shift scheduling optimization and interactive reoptimization[J].European Journal of Operational Research,2019,279(2):320-334.
[18]LIU H J,ZHANG X,LI M.Determination of the Number of Wavelet Denoising Decomposition Layers in Vehicle Driving dEvaluationf[J].Noise and Vibration Control,2019,39(4):7-11.
[19]QIANG L,ZHE W.Image Compression Based on Wavelet Ana-lysis[J].Communications Technology,2010,43(8):236-238,241.
[1] 周乐员, 张剑华, 袁甜甜, 陈胜勇.
多层注意力机制融合的序列到序列中国连续手语识别和翻译
Sequence-to-Sequence Chinese Continuous Sign Language Recognition and Translation with Multi- layer Attention Mechanism Fusion
计算机科学, 2022, 49(9): 155-161. https://doi.org/10.11896/jsjkx.210800026
[2] 李宗民, 张玉鹏, 刘玉杰, 李华.
基于可变形图卷积的点云表征学习
Deformable Graph Convolutional Networks Based Point Cloud Representation Learning
计算机科学, 2022, 49(8): 273-278. https://doi.org/10.11896/jsjkx.210900023
[3] 陈泳全, 姜瑛.
基于卷积神经网络的APP用户行为分析方法
Analysis Method of APP User Behavior Based on Convolutional Neural Network
计算机科学, 2022, 49(8): 78-85. https://doi.org/10.11896/jsjkx.210700121
[4] 朱承璋, 黄嘉儿, 肖亚龙, 王晗, 邹北骥.
基于注意力机制的医学影像深度哈希检索算法
Deep Hash Retrieval Algorithm for Medical Images Based on Attention Mechanism
计算机科学, 2022, 49(8): 113-119. https://doi.org/10.11896/jsjkx.210700153
[5] 檀莹莹, 王俊丽, 张超波.
基于图卷积神经网络的文本分类方法研究综述
Review of Text Classification Methods Based on Graph Convolutional Network
计算机科学, 2022, 49(8): 205-216. https://doi.org/10.11896/jsjkx.210800064
[6] 张颖涛, 张杰, 张睿, 张文强.
全局信息引导的真实图像风格迁移
Photorealistic Style Transfer Guided by Global Information
计算机科学, 2022, 49(7): 100-105. https://doi.org/10.11896/jsjkx.210600036
[7] 戴朝霞, 李锦欣, 张向东, 徐旭, 梅林, 张亮.
基于DNGAN的磁共振图像超分辨率重建算法
Super-resolution Reconstruction of MRI Based on DNGAN
计算机科学, 2022, 49(7): 113-119. https://doi.org/10.11896/jsjkx.210600105
[8] 刘月红, 牛少华, 神显豪.
基于卷积神经网络的虚拟现实视频帧内预测编码
Virtual Reality Video Intraframe Prediction Coding Based on Convolutional Neural Network
计算机科学, 2022, 49(7): 127-131. https://doi.org/10.11896/jsjkx.211100179
[9] 徐鸣珂, 张帆.
Head Fusion:一种提高语音情绪识别的准确性和鲁棒性的方法
Head Fusion:A Method to Improve Accuracy and Robustness of Speech Emotion Recognition
计算机科学, 2022, 49(7): 132-141. https://doi.org/10.11896/jsjkx.210100085
[10] 金方焱, 王秀利.
融合RACNN和BiLSTM的金融领域事件隐式因果关系抽取
Implicit Causality Extraction of Financial Events Integrating RACNN and BiLSTM
计算机科学, 2022, 49(7): 179-186. https://doi.org/10.11896/jsjkx.210500190
[11] 杨玥, 冯涛, 梁虹, 杨扬.
融合交叉注意力机制的图像任意风格迁移
Image Arbitrary Style Transfer via Criss-cross Attention
计算机科学, 2022, 49(6A): 345-352. https://doi.org/10.11896/jsjkx.210700236
[12] 杨健楠, 张帆.
一种结合双注意力机制和层次网络结构的细碎农作物分类方法
Classification Method for Small Crops Combining Dual Attention Mechanisms and Hierarchical Network Structure
计算机科学, 2022, 49(6A): 353-357. https://doi.org/10.11896/jsjkx.210200169
[13] 王杉, 徐楚怡, 师春香, 张瑛.
基于CNN-LSTM的卫星云图云分类方法研究
Study on Cloud Classification Method of Satellite Cloud Images Based on CNN-LSTM
计算机科学, 2022, 49(6A): 675-679. https://doi.org/10.11896/jsjkx.210300177
[14] 孙福权, 崔志清, 邹彭, 张琨.
基于多尺度特征的脑肿瘤分割算法
Brain Tumor Segmentation Algorithm Based on Multi-scale Features
计算机科学, 2022, 49(6A): 12-16. https://doi.org/10.11896/jsjkx.210700217
[15] 吴子斌, 闫巧.
基于动量的映射式梯度下降算法
Projected Gradient Descent Algorithm with Momentum
计算机科学, 2022, 49(6A): 178-183. https://doi.org/10.11896/jsjkx.210500039
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!