计算机科学 ›› 2021, Vol. 48 ›› Issue (1): 65-71.doi: 10.11896/jsjkx.200500098

• 智能化边缘计算* 上一篇    下一篇

边缘计算场景中基于虚拟映射的隐私保护卸载算法

余雪勇, 陈涛   

  1. 江苏省无线通信重点实验室 南京 210003
  • 收稿日期:2020-05-21 修回日期:2020-08-14 出版日期:2021-01-15 发布日期:2021-01-15
  • 通讯作者: 余雪勇(yuxy@njupt.edu.cn)
  • 基金资助:
    国家自然科学基金资助项目(61871446);南京邮电大学自然科学基金项目(NY220047)

Privacy Protection Offloading Algorithm Based on Virtual Mapping in Edge Computing Scene

YU Xue-yong, CHEN Tao   

  1. Wireless Communication Key Lab of Jiangsu Province,Nanjing 210003,China
  • Received:2020-05-21 Revised:2020-08-14 Online:2021-01-15 Published:2021-01-15
  • About author:YU Xue-yong,born in 1979,Ph.D,associate professor.His main researchintere-sts include Internet of Thing (IoT),mobile edge computing and radio resource management on heterogeneous wireless networks.
  • Supported by:
    National Natural Science Foundation of China(61871446) and Natural Science Foundation of Nanjing University of Posts and Telecommunications(NY220047).

摘要: 随着移动边缘计算(Mobile Edge Computing,MEC)和无线充电技术(Wireless Power Transmission,WPT)的诞生和发展,越来越多的计算任务被卸载至MEC服务器以进行处理,并借助WPT技术为终端设备供电,以缓解终端设备计算能力受限和设备能耗过高的问题。由于卸载的任务和数据往往携带用户个人使用习惯等信息,因此将任务卸载到MEC服务器进行处理会导致新的隐私泄露问题。针对上述问题,文中首先对计算任务的隐私量进行定义,并设计了能够降低用户在MEC服务器累积隐私量的虚拟任务映射机制;然后,综合考虑映射机制与隐私约束的优化,提出了一种具有隐私保护效果的在线隐私感知计算卸载算法;最后,对仿真结果进行分析发现,所提卸载方法能够使用户累积隐私量保持在隐私阈值内,达到了隐私保护的效果,同时提高了系统计算速率,降低了用户计算时延。

关键词: 边缘计算, 计算卸载, 隐私保护, 虚拟映射, 神经网络

Abstract: With the development of mobile edge computing (MEC) and wireless power transfer (WPT),more and more computing tasks are offloaded to the MEC server for processing.The terminal equipment is powered by WPT technology to alleviate the limited computing power of the terminal equipment and high energy consumption of the terminal equipment.However,since the offloaded tasks and data often carry information such as users' personal usage habits,tasks are offloaded to the MEC server for processing results in new privacy leakage issues.A privacy-aware computation offloading method based on virtual mapping is proposed in this paper.Firstly,the privacy of the computing task is defined,and then a virtual task mapping mechanism that can reduce the amount of privacy accumulated by users on the MEC server is designed.Secondly,the online privacy-aware computing offloading algorithm is proposed by considering the optimization of the mapping mechanism and privacy constraints jointly.Finally,simulation results validate that the proposed offloading method can keep the cumulative privacy of users below the threshold,increase the system calculation rate and reduce users' calculation delay at the same time.

Key words: Edge computing, Computation offloading, Privacy protection, Virtual mapping, Neural network

中图分类号: 

  • TP393
[1] LIN J,YU W,ZHANG N,et al.A Survey on Internet ofThings:Architecture,Enabling Technologies,Security and Privacy,and Applications[J].IEEE Internet of Things Journal,2017,4(5):1125-1142.
[2] SUN X,ANSARI N.EdgeIoT:Mobile edge computing for the Internet of Things[J].IEEE Communications Magazine,2016,54(12):22-29.
[3] SABELLA D,VAILLANT A,KUURE P,et al.Mobile-edgecomputing architecture:The role of MEC in the Internet of Things[J].IEEE Consumer Electronics Magazine,2016,5(4):84-91.
[4] CORCORAN P,DATTA S K.Mobile-edge computing and theInternet of Things for consumers:Extending cloud computing and services to the edge of the network[J].IEEE Consumer Electronics Magazine,2016,5(4):73-74.
[5] ZHANG J L,ZHAO Y C,CHEN B,et al.Survey on data security and privacy-preserving for the research of edge computing [J].Journal on Communications,2018,39(3):1-21.
[6] YOUSEFPOUR A,ISHIGAKI G,GOUR R,et al.On reducing IoT service delay via fog offloading[J].IEEE Internet of Things Journal,2018,5(2):998-1010.
[7] BI S Z,HO C K,ZHANG R.Wireless powered communication:Opportunities and challenges[J].IEEE Communications Magazine,2015,53(4):117-125.
[8] WANG F,XU J,WANG X,et al.Joint offloading and computingoptimization in wireless powered mobile-edge computing systems[J].IEEE Transactions on Wireless Communications,2018,17(3):1784-1797.
[9] BI S Z,ZHANG Y J.Computation Rate Maximization for Wireless Powered Mobile-Edge Computing with Binary Computation Offloading[J].IEEE Transactions on Wireless Communications,2017,17(6):4177-4190.
[10] YANG Y C,WU L F,YIN G S,et al.A survey on security and privacy issues in Internet-of-Things[J].IEEE Internet Things Journal,2017,4(5):1250-1258.
[11] REN H,LI H W,DAI Y S,et al.Querying in Internet of Things with privacy preserving:Challenges,solutions and opportunities[J].IEEE Network,2018,32(6):144-151.
[12] ALRAWAIS A,ALHOTHAILY A,HU C Q,et al.Fog computing for the Internet of Things:Security and privacy issues[J].IEEE Internet Computing,2017,21(2):34-42.
[13] WANGS,LUO Y,SUN L,et al.Design of Privacy Preservation Authentication Protocol in Pervasive Environment[J].Computer Engineering,2012,38(6):129-131.
[14] LIU Y,SHAREN G W,ZHANG L W.Secure Authentication Approach of Mobile Terminals with Privacy Protection in the Mobile Cloud Computing[J].Journal of Chongqing University of Technology (Natural Science),2019,33(10):161-167.
[15] WANG Y,GE H B,FENG A Q.Computation Offloading Strategy in Cloud-Assisted Mobile Edge Computing[J].Computer Engineering,2020,46(8):27-34.
[16] HU J,YANG G,CHEN Z Y,et al.Research of Privacy-preserving Technology in Wireless Sensor Network Data Aggregation[J].Computer Engineering,2012,38(15):134-138.
[17] BOTTA A,DONATO W D,PERSICO V,et al.Integration of cloud computing and Internet of Things:A survey[J].Future Generation Computer System,2016,56:684-700.
[18] HE X F,LIU J,JIN R C,et al.Privacy-aware offloading in mobile-edge computing[C]// IEEE Global Communications Conference.Singapore,2017:1-6.
[19] MIN M H,WAN X Y,XIAO L,et al.Learning-based privacy-aware offloading for healthcare IoT with energy harvesting[J].IEEE Internet of Things Journal,2019,6(3):4307-4316.
[20] HE X F,JIN R C,DAI H Y.Deep PDS-learning for privacy-aware offloading in MEC-enabled IoT[J].IEEE Internet of Things Journal,2019,6(3):4547-4555.
[21] YOU C S,HUANG K B,CHAE H.Energy efficient mobilecloud computing powered by wireless energy transfer[J].IEEE Journal on Selected Areas in Communications,2016,34(5):1757-1771.
[22] BULTITUDE R.Measurement,characterization and modeling of indoor 800/900 MHz radio channels for digital communications[J].IEEE Communications Magazine,1987,25(6):5-12.
[23] HOWARD S J,PAHLAVAN K.Doppler spread measurements of indoor radio channel[J].Electronics Letters,1990,26(2):107-109.
[24] HERBERT S,WASSELL I,LOH T,et al.Characterizing thespectral properties and time variation of the in-vehicle wireless communication channel[J].IEEE Transactions on Communications,2014,62(7):2390-2399.
[25] GUO S T,XIAO B,YANG Y Y,et al.Energy-efficient dynamic offloading and resource scheduling in mobile cloud computing[C]//IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications.San Francisco,2016:1-9.
[26] ZHAO X,PENG J H,YOU W.A Privacy-aware Computation Offloading Method Based on Lyapunov Optimization[J].Journal of Electronics & Information Technology,2020,42(3):704-711.
[27] LIANG H,BI S Z,ZHANG Y J.Deep Reinforcement Learning for Online Computation Offloading in Wireless Powered Mobile-Edge Computing Networks[J].IEEE Transactions on Mobile Computing,2020,19(11):2581-2593.
[1] 李辉, 李秀华, 熊庆宇, 文俊浩, 程路熙, 邢镔. 边缘计算助力工业互联网:架构、应用与挑战[J]. 计算机科学, 2021, 48(1): 1-10.
[2] 刘通, 方璐, 高洪皓. 边缘计算中任务卸载研究综述[J]. 计算机科学, 2021, 48(1): 11-15.
[3] 梁俊斌, 田凤森, 蒋婵, 王天舒. 物联网中多设备多服务器的移动边缘计算任务卸载技术综述[J]. 计算机科学, 2021, 48(1): 16-25.
[4] 于天琪, 胡剑凌, 金炯, 羊箭锋. 基于移动边缘计算的车载CAN网络入侵检测方法[J]. 计算机科学, 2021, 48(1): 34-39.
[5] 马堉银, 郑万波, 马勇, 刘航, 夏云霓, 郭坤银, 陈鹏, 刘诚武. 一种基于深度强化学习与概率性能感知的边缘计算环境多工作流卸载方法[J]. 计算机科学, 2021, 48(1): 40-48.
[6] 毛莺池, 周彤, 刘鹏飞. 基于延迟接受的多用户任务卸载策略[J]. 计算机科学, 2021, 48(1): 49-57.
[7] 唐文君, 刘岳, 陈荣. 移动边缘计算中的动态用户分配方法[J]. 计算机科学, 2021, 48(1): 58-64.
[8] 高基旭, 王珺. 一种基于遗传算法的多边缘协同计算卸载方案[J]. 计算机科学, 2021, 48(1): 72-80.
[9] 杨紫淇, 蔡英, 张皓晨, 范艳芳. 基于负载均衡的VEC服务器联合计算任务卸载方案[J]. 计算机科学, 2021, 48(1): 81-88.
[10] 单美静, 秦龙飞, 张会兵. L-YOLO:适用于车载边缘计算的实时交通标识检测模型[J]. 计算机科学, 2021, 48(1): 89-95.
[11] 郦睿翔, 毛莺池, 郝帅. 基于近似匹配的移动边缘计算缓存管理方法[J]. 计算机科学, 2021, 48(1): 96-102.
[12] 郭飞雁, 唐兵. 基于用户延迟感知的移动边缘服务器放置方法[J]. 计算机科学, 2021, 48(1): 103-110.
[13] 何彦辉, 吴桂兴, 吴志强. 基于域适应的X光图像的目标检测[J]. 计算机科学, 2021, 48(1): 175-181.
[14] 李亚男, 胡宇佳, 甘伟, 朱敏. 基于深度学习的miRNA靶位点预测研究综述[J]. 计算机科学, 2021, 48(1): 209-216.
[15] 张艳梅, 楼胤成. 基于深度神经网络的庞氏骗局合约检测方法[J]. 计算机科学, 2021, 48(1): 273-279.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张佳男,肖鸣宇. 带权混合支配问题的近似算法研究[J]. 计算机科学, 2018, 45(4): 83 -88 .
[2] 伍建辉,黄中祥,李武,吴健辉,彭鑫,张生. 城市道路建设时序决策的鲁棒优化[J]. 计算机科学, 2018, 45(4): 89 -93 .
[3] 耿海军,施新刚,王之梁,尹霞,尹少平. 基于有向无环图的互联网域内节能路由算法[J]. 计算机科学, 2018, 45(4): 112 -116 .
[4] 夏庆勋,庄毅. 一种基于局部性原理的远程验证机制[J]. 计算机科学, 2018, 45(4): 148 -151 .
[5] 罗霄阳,霍宏涛,王梦思,陈亚飞. 基于多残差马尔科夫模型的图像拼接检测[J]. 计算机科学, 2018, 45(4): 173 -177 .
[6] 崔建京,龙军,闵尔学,于洋,殷建平. 同态加密在加密机器学习中的应用研究综述[J]. 计算机科学, 2018, 45(4): 46 -52 .
[7] 王正理,谢添,何琨,金燕. 考虑时间因素的0-1背包调度问题[J]. 计算机科学, 2018, 45(4): 53 -59 .
[8] 李珊,饶文碧. 基于视频的矿井中人体运动区域检测[J]. 计算机科学, 2018, 45(4): 291 -295 .
[9] 张昱, 高克宁, 于戈. 一种融合节点属性信息的社会网络链接预测方法[J]. 计算机科学, 2018, 45(6): 41 -45 .
[10] 吴建霞, 杨永立. 一种降低FBMC-OQAM系统PAPR的算法[J]. 计算机科学, 2018, 45(6): 89 -95 .