计算机科学 ›› 2021, Vol. 48 ›› Issue (5): 109-116.doi: 10.11896/jsjkx.200600115

所属专题: 大数据&数据科学 虚拟专题

• 数据库&大数据&数据科学 • 上一篇    下一篇

联合学习用户端和项目端知识图谱的个性化推荐

梁浩宏1,2, 古天龙2, 宾辰忠2, 常亮1,2   

  1. 1 桂林电子科技大学计算机与信息安全学院 广西 桂林541004
    2 桂林电子科技大学广西可信软件重点实验室 广西 桂林541004
  • 收稿日期:2020-06-19 修回日期:2020-09-06 出版日期:2021-05-15 发布日期:2021-05-09
  • 通讯作者: 宾辰忠(binchenzhong@guet.edu.cn)
  • 基金资助:
    国家自然科学基金项目(62066010,61862016,61966009);广西自然科学基金项目(2020GXNSFAA159055);广西创新驱动重大专项项目(AA17202024)

Combining User-end and Item-end Knowledge Graph Learning for Personalized Recommendation

LIANG Hao-hong1,2, GU Tian-long2, BIN Chen-zhong2, CHANG Liang1,2   

  1. 1 School of Computer Science and Information Security,Guilin University of Electronic Technology,Guilin,Guangxi 541004,China
    2 Guangxi Key Laboratory of Trusted Software,Guilin University of Electronic Technology,Guilin,Guangxi 541004,China
  • Received:2020-06-19 Revised:2020-09-06 Online:2021-05-15 Published:2021-05-09
  • About author:LIANG Hao-hong,born in 1996.His main research interests include recommendation system and data mining.(2595913698@qq.com)
    BIN Chen-zhong,born in 1977,Ph.D,professor.His main research interests include data mining and intelligent re-commendation.
  • Supported by:
    National Natural Science Foundation of China(62066010,61862016,61966009),Natural Science Foundation of Guangxi Province(2020GXNSFAA159055) and Innovation-DrivenMajor projects of Guangxi Province(AA17202024).

摘要: 如何在已有的用户行为和辅助信息的基础上准确建模用户的偏好非常重要。在各种辅助信息中,知识图谱(Know-ledge Graph,KG)作为一种新型辅助信息,其节点和边包含了丰富的结构信息和语义信息,近年来受到了越来越多研究者的关注。大量研究表明,在个性化推荐中引入知识图谱可以有效地提高推荐的性能,并增强推荐的合理性和可解释性。然而,现有的方法要么是在KG上探索每个用户-项目交互对(user-item)的独立子路径,要么使用图表示学习的方法在KG中分别学习目标用户(user)或项目(item)的表示,虽然都取得了一定的效果,但是前者没有充分捕获用户-项目(user-item)在KG上的结构信息,后者在产生嵌入(embedding)表示的过程中忽略了user和item的相互影响。为了弥补上述方法的不足,提出了一种联合学习用户端和项目端知识图谱(User-end and Item-end Knowledge Graph,UIKG)的新模型。该模型通过挖掘用户和项目在各自KG中的关联属性信息,并通过联合学习有效地捕获用户的个性化偏好与项目之间的关联性。具体的操作步骤是,利用基于图卷积神经网络的方法从用户知识图谱中学习用户表示向量,再将用户表示向量引入项目知识图谱中联合学习得到项目表示向量,实现用户端KG和项目端KG的无缝统一,最后通过多层感知器进行偏好预测,得到用户对项目的偏好概率,从而更有效地挖掘KG中的高阶结构信息和语义信息来捕获用户的个性化偏好。在公开数据集上的实验结果表明,与基线方法相比,UIKG在Recall@K指标上提高了2.5%~13.6%,在AUC和F1指标上提高了0.4%~5.8%。

关键词: 个性化推荐, 联合学习, 图卷积神经网络, 知识图谱

Abstract: How to accurately model user preferences based on existing user behavior and auxiliary information is of great important.Among all kinds of auxiliary information,Knowledge Graph (KG) as a new type of auxiliary information,its nodes and edges contain rich structural information and semantic information,and attracts a growing researchers' attention in recent years.Plenty of studies show that the introduction of KG in personalized recommendation can effectively improve the performance of recommendation,and enhance the rationality and interpretability of recommendation.However,the existing methods either explore the independent meta-paths for user-item pairs over KG,or adopt graph representation learning on whole KG to obtain representations for users and items separately.Although both have achieved certain effects,the former fails to fully capture the structural information of user-item pairs in KG,while the latter ignores the mutual effect between target user and item during the embedding propagation.In order to make up for the shortcomings of the above methods,this paper proposes a new model named User-end and Item-end Knowledge Graph (UIKG),which can effectively capture the correlation between users' personalizedpreferences and items by mining the associated attribute information in their respective KG.Specifically,we learn the user representation vectors from the user KG,and then introduce the user representation vectors into the item KG based on the method of graph convolution neural network to jointly learn the item representation vectors,so as to realize the seamless unity of the user KG and the item KG.Finally,we predict the user preference probability of the item through MLP.Experimental results on open datasets show that,compared with the baseline method,UIKG improves by 2.5%~13.6% on Recall@K index,and 0.4%~5.8% on AUC and F1 indexes.

Key words: combination learning, Graph convolutional neural network, Knowledge graph, Personalized recommendation

中图分类号: 

  • TP331
[1]LIAN D,ZHENG V W,XIE X,et al.Collaborative filteringmeets next check-in location prediction[C]//The Web Conference.2013:231-232.
[2]RENDLE S,GANTNER Z,FREUDENTHALER C,et al.Fast context-aware recommendations with factorization machines[C]//International ACM Sigir Conference on Research and Development in Information Retrieval.2011:635-644.
[3]GAO H,TANG J,HU X,et al.Content-aware point of interest recommendation on location-based social networks[C]//National Conference on Artificial Intelligence.2015:1721-1727.
[4]HUANG J,ZHAO W X,DOU H,et al.Improving Sequential Recommendation with Knowledge-Enhanced Memory Networks[C]//International ACM Sigir Conference on Research and Development in Information Retrieval.2018:505-514.
[5]WANG H,ZHANG F,XIE X,et al.DKN:Deep Knowledge-Aware Network for News Recommendation[C]//The Web Conference.2018:1835-1844.
[6]ZHANG J,SHI X,ZHAO S,et al.STAR-GCN:Stacked and Reconstructed Graph Convolutional Networks for Recommender Systems[C]//International Joint Conference on Artificial Intelligence.2019:4264-4270.
[7]GAO H,TANG J,HU X,et al.Content-aware point of interest recommendation on location-based social networks[C]//National Conference on Artificial Intelligence.2015:1721-1727.
[8]YU X,REN X,SUN Y,et al.Personalized entity recommendation:a heterogeneous information network approach[C]//Web Search and Data Mining.2014:283-292.
[9]ZHAO H,YAO Q,LI J,et al.Meta-Graph Based Recommendation Fusion over Heterogeneous Information Networks[C]//Knowledge Discovery and Data Mining.2017:635-644.
[10]CHEN X,XU H,ZHANG Y,et al.Sequential Recommendation with User Memory Networks[C]//Web Search and Data Mining.2018:108-116.
[11]HE X,CHUA T.Neural Factorization Machines for Sparse Predictive Analytics[C]//International ACM Sigir Conference on Research and Development in Information Retrieval.2017:355-364.
[12]HE X,HE Z,DU X,et al.Adversarial Personalized Ranking for Recommendation[C]//International ACM Sigir Conference on Research and Development in Information Retrieval.2018:355-364.
[13]YE Z,ZHAO H,ZHANG K,et al.Improved DeepWalk Algorithm Based on Preference Random Walk[C]//International Conference Natural Language Processing.2019:265-276.
[14]LAZARIDOU A,BARONI M.Combining Language and Vision with a Multimodal Skip-gram Model[J].arXiv:1501.02598v3,2015.
[15]TANG J,QU M,WANG M,et al.LINE:Large-scale Information Network Embedding[C]//The Web Conference.2015:1067-1077.
[16]GROVER A,LESKOVEC J.node2vec:Scalable Feature Learning for Networks[C]//Knowledge Discovery and Data Mining.2016:855-864.
[17]LE Q V,MIKOLOV T.Distributed Representations of Sen-tences and Documents[C]//International Conference on Machine Learning.2014:1188-1196.
[18]BORDES A,USUNIER N,GARCIADURAN A,et al.Translating Embeddings for Modeling Multi-relational Data[C]//Neural Information Processing Systems.2013:2787-2795.
[19]MOUSSA H,CHOUCHENE B,GRIES T,et al.Growth of ZnO Nanorods on Graphitic Carbon Nitride GCN Sheets for the Preparation of Photocatalysts with High Visible‐Light Activity[J].Chemcatchem,2018,10(21):4973-4983.
[20]WANG X,WANG D X,XU C R,et al.Explainable Reasoning over Knowledge Graphs for Recommendation[J].arXiv:1811.04540v1,2018.
[21]YING R,HE R,CHEN K,et al.Graph Convolutional Neural Networks for Web-Scale Recommender Systems[C]//Knowledge Discovery and Data Mining.2018:974-983.
[22]CHAMI I,YING R,RE C,et al.Hyperbolic Graph Convolutional Neural Networks[J].Advances in Neural Information Processing Systems,2019,32:4869-4880.
[23]ZHANG F,YUAN N J,LIAN D,et al.Collaborative Knowledge Base Embedding for Recommender Systems[C]//Knowledge Discovery and Data Mining.2016:353-362.
[24]GUO S,WANG Q,WANG B,et al.Semantically SmoothKnowledge Graph Embedding[C]//International Joint Conference on Natural Language Processing.2015:84-94.
[25]WANG H,ZHANG F,WANG J,et al.RippleNet:Propagating User Preferences on the Knowledge Graph for Recommender Systems[C]//Conference on Information and Knowledge Management.2018:417-426.
[26]WANG H,ZHAO M,XIE X,et al.Knowledge Graph Convolutional Networks for Recommender Systems[C]//The Web Conference.2019:3307-3313.
[27]WANG X,HE X,CAO Y,et al.KGAT:Knowledge Graph Attention Network for Recommendation[C]//Knowledge Discovery and Data Mining.2019:950-958.
[1] 徐涌鑫, 赵俊峰, 王亚沙, 谢冰, 杨恺.
时序知识图谱表示学习
Temporal Knowledge Graph Representation Learning
计算机科学, 2022, 49(9): 162-171. https://doi.org/10.11896/jsjkx.220500204
[2] 饶志双, 贾真, 张凡, 李天瑞.
基于Key-Value关联记忆网络的知识图谱问答方法
Key-Value Relational Memory Networks for Question Answering over Knowledge Graph
计算机科学, 2022, 49(9): 202-207. https://doi.org/10.11896/jsjkx.220300277
[3] 吴子仪, 李邵梅, 姜梦函, 张建朋.
基于自注意力模型的本体对齐方法
Ontology Alignment Method Based on Self-attention
计算机科学, 2022, 49(9): 215-220. https://doi.org/10.11896/jsjkx.210700190
[4] 孔世明, 冯永, 张嘉云.
融合知识图谱的多层次传承影响力计算与泛化研究
Multi-level Inheritance Influence Calculation and Generalization Based on Knowledge Graph
计算机科学, 2022, 49(9): 221-227. https://doi.org/10.11896/jsjkx.210700144
[5] 秦琪琦, 张月琴, 王润泽, 张泽华.
基于知识图谱的层次粒化推荐方法
Hierarchical Granulation Recommendation Method Based on Knowledge Graph
计算机科学, 2022, 49(8): 64-69. https://doi.org/10.11896/jsjkx.210600111
[6] 檀莹莹, 王俊丽, 张超波.
基于图卷积神经网络的文本分类方法研究综述
Review of Text Classification Methods Based on Graph Convolutional Network
计算机科学, 2022, 49(8): 205-216. https://doi.org/10.11896/jsjkx.210800064
[7] 李宗民, 张玉鹏, 刘玉杰, 李华.
基于可变形图卷积的点云表征学习
Deformable Graph Convolutional Networks Based Point Cloud Representation Learning
计算机科学, 2022, 49(8): 273-278. https://doi.org/10.11896/jsjkx.210900023
[8] 王杰, 李晓楠, 李冠宇.
基于自适应注意力机制的知识图谱补全算法
Adaptive Attention-based Knowledge Graph Completion
计算机科学, 2022, 49(7): 204-211. https://doi.org/10.11896/jsjkx.210400129
[9] 马瑞新, 李泽阳, 陈志奎, 赵亮.
知识图谱推理研究综述
Review of Reasoning on Knowledge Graph
计算机科学, 2022, 49(6A): 74-85. https://doi.org/10.11896/jsjkx.210100122
[10] 邓凯, 杨频, 李益洲, 杨星, 曾凡瑞, 张振毓.
一种可快速迁移的领域知识图谱构建方法
Fast and Transmissible Domain Knowledge Graph Construction Method
计算机科学, 2022, 49(6A): 100-108. https://doi.org/10.11896/jsjkx.210900018
[11] 杜晓明, 袁清波, 杨帆, 姚奕, 蒋祥.
军事指控保障领域命名实体识别语料库的构建
Construction of Named Entity Recognition Corpus in Field of Military Command and Control Support
计算机科学, 2022, 49(6A): 133-139. https://doi.org/10.11896/jsjkx.210400132
[12] 熊中敏, 舒贵文, 郭怀宇.
融合用户偏好的图神经网络推荐模型
Graph Neural Network Recommendation Model Integrating User Preferences
计算机科学, 2022, 49(6): 165-171. https://doi.org/10.11896/jsjkx.210400276
[13] 钟将, 尹红, 张剑.
基于学术知识图谱的辅助创新技术研究
Academic Knowledge Graph-based Research for Auxiliary Innovation Technology
计算机科学, 2022, 49(5): 194-199. https://doi.org/10.11896/jsjkx.210400195
[14] 李子仪, 周夏冰, 王中卿, 张民.
基于用户关联的立场检测
Stance Detection Based on User Connection
计算机科学, 2022, 49(5): 221-226. https://doi.org/10.11896/jsjkx.210400135
[15] 高越, 傅湘玲, 欧阳天雄, 陈松龄, 闫晨巍.
基于时空自适应图卷积神经网络的脑电信号情绪识别
EEG Emotion Recognition Based on Spatiotemporal Self-Adaptive Graph ConvolutionalNeural Network
计算机科学, 2022, 49(4): 30-36. https://doi.org/10.11896/jsjkx.210900200
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!