计算机科学 ›› 2020, Vol. 47 ›› Issue (11): 231-236.doi: 10.11896/jsjkx.200800195

• 人工智能 • 上一篇    下一篇

结合三元组重要性的知识图谱补全模型

李忠文1, 丁烨2, 花忠云1, 李君一1, 廖清1   

  1. 1 哈尔滨工业大学(深圳)计算机科学与技术学院 广东 深圳 518055
    2 东莞理工学院网络空间安全学院 广东 东莞 523808
  • 收稿日期:2020-05-31 修回日期:2020-09-16 出版日期:2020-11-15 发布日期:2020-11-05
  • 通讯作者: 廖清(liaoqing@hit.edu.cn)
  • 作者简介:18S151566@stu.hit.edu.cn
  • 基金资助:
    国家自然科学基金(U1711261)

Knowledge Graph Completion Model Based on Triplet Importance Integration

LI Zhong-wen1, DING Ye 2, HUA Zhong-yun1, LI Jun-yi1, LIAO Qing1   

  1. 1 Department of Computer Science and Technology,Harbin Institute of Technology,Shenzhen,Shenzhen,Guangdong 518055,China
    2 Department of Cyberspace Security,Dongguan University of Technology,Dongguan,Guangdong 523808,China
  • Received:2020-05-31 Revised:2020-09-16 Online:2020-11-15 Published:2020-11-05
  • About author:LI Zhong-wen,born in 1996,postgra-duate.His main research interests include artificial intelligence and natural language processing.
    LIAO Qing,born in 1988,Ph.D,assistant professor.Her research interests include artificial intelligence and data mining.
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(U1711261).

摘要: 知识图谱是人工智能方向的一个热门研究领域。知识图谱补全是在给定头实体或者尾实体以及相应关系的条件下,补全缺失实体。基于翻译的模型如TransE,TransH和TransR是最常用的一类知识图谱补全方法。然而,大多数现有的补全模型在补全过程中都忽略了知识图谱中三元组重要性的特征。文中提出了一种新型的知识图谱补全模型ImpTransE,该模型考虑了三元组中的重要性特征,设计了实体重要性排序方法KGNodeRank和多粒度关系重要性估计方法MG-RIE,分别对实体重要性和关系重要性进行估计。具体来说,KGNodeRank通过同时考虑关联结点的重要性及其重要性传递方向的概率来估计实体结点的重要性排名。MG-RIE则同时考虑了关系的一阶重要性和高阶重要性,从而对关系的总体重要性进行合理估计。ImpTransE同时考虑了三元组的实体重要性和关系重要性特征,使其在学习过程中对于不同的三元组信息可赋予不同的关注程度,提高了模型的表示学习性能,从而达到了更好的补全效果。实验结果表明,在两类知识图谱数据集中与5种对比模型相比,ImpTransE模型在大部分指标上均具有最佳的补全性能,对不同数据集的补全效果获得了一致的提升。

关键词: 关系重要性, 链接预测, 实体重要性, 知识图谱

Abstract: Knowledge graph is a popular research area related to artificial intelligence.Knowledge graph completion is the completion of missing entities given head or tail entities and corresponding relations.Translation models (such as TransE,TransH and TransR) are one of the most commonly used completion methods.However,most of the existing completion models ignore the feature of the importance of the triplets in the knowledge graph during the completion process.This paper proposes a novel knowledge graph completion model,ImpTransE,which takes into account the importance feature in triplets,and designs the entity importance ranking method KGNodeRank and the multi-grained relation importance estimation method MG-RIE,to estimate the entity importance and relation importance,respectively.Specifically,the KGNodeRank method estimates the entity node importance ranking by considering both the importance of the associated nodes and the probability that their importance is transmitted,while the MG-RIE method considers multi-order relation importance to provide a reasonable estimate of the overall importance of the relation.ImpTransE takes into account the entity importance and relation importance features of triplets,so that differentle-vels of attention are given to different triplets during the learning process,which improves the learning performance of the ImpTransE model and thus achieves better completion performance.Experimental results show that ImpTransE model has the best completion performance in most of the metrics on the two knowledge graph datasets compared with the five comparison models,and completion performance of different datasets is consistently improved.

Key words: Entity importance, Knowledge graph, Link prediction, Relation importance

中图分类号: 

  • TP391
[1] MILLER G A.WordNet:a lexical database for English[J].Communications of the ACM,1995,38(11):39-41.
[2] BOLLACKER K,EVANS C,PARITOSH P,et al.Freebase:acollaboratively created graph database for structuring human knowledge[C]//Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data.Association for Computing Machinery,2008:1247-1250.
[3] FABIAN M S,GJERGJI K,GERHARD W.Yago:A core of semantic knowledge unifying wordnet and wikipedia[C]//16th International World Wide Web Conference,WWW.Association for Computing Machinery,2007:697-706.
[4] BORDES A,WESTON J,COLLOBRET R,et al.Learningstructured embeddings of knowledge bases[C]//Conference on Artificial Intelligence.2011 (CONF).
[5] SOCHER R,CHEN D,MANNING C D,et al.Reasoning with neural tensor networks for knowledge base completion[C]//Advances in Neural Information Processing Systems.2013:926-934.
[6] BORDES A,USUNIER N,GARCIA-DURAN A,et al.Translating embeddings for modeling multi-relational data[C]//Advances in Neural Information Processing Systems.MIT Press,2013:2787-2795.
[7] WANG Z,ZHANG J,FENG J,et al.Knowledge graph embedding by translating on hyperplanes[C]//Twenty-Eighth AAAI Conference on Artificial Intelligence.AAAI,2014:1112-1119.
[8] LIN Y,LIU Z,SUN M,et al.Learning entity and relation embeddings for knowledge graph completion[C]//Twenty-ninth AAAI Conference on Artificial Intelligence.AAAI,2015:2181-2187.
[9] PARK N,KAN A,DONG X L,et al.Estimating node importance in knowledge graphs using graph neural networks[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.Association for Computing Machinery,2019:596-606.
[10] YANG B,YIH W,HE X,et al.Embedding entities and relations for learning and inference in knowledge bases[J].arXiv:1412.6575.
[11] TROUILLON T,WELBL J,RIEDEL S,et al.Complex embeddings for simple link prediction[C]//International Conference on Machine Learning (ICML).2016.
[12] PAGE L,BRIN S,MOTWANI R,et al.The pagerank citation ranking:Bringing order to the web[R].Stanford:StanfordInfoLab,1999.
[13] ZHANG Z,CAI J,ZHANG Y,et al.Learning Hierarchy-Aware Knowledge Graph Embeddings for Link Prediction[J].arXiv:1911.09419.
[14] OH B,SEO S,LEE K H.Knowledge graph completion by context-aware convolutional learning with multi-hop neighborhoods[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management.2018:257-266.
[15] ZHU Y,LIU H,WU Z,et al.Representation Learning with Ordered Relation Paths for Knowledge Graph Completion[J].arXiv:1909.11864.
[16] WANG C C,CHENG P J.Translating Representations ofKnowledge Graphs with Neighbors[C]//The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval.Association for Computing Machinery,2018:917-920.
[17] FAN M,ZHOU Q,CHANG E,et al.Transition-based Knowledge Graph Embedding with relational mapping properties[C]//Proceedings of the 28th Pacific Asia Conference on Language,Information and Computing.PACLIC,2014:328-337.
[18] HAN X,CAO S,LV X,et al.Openke:An Open Toolkit forKnowledge Embedding[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing:System Demonstrations.2018:139-144.
[1] 宋杰, 梁美玉, 薛哲, 杜军平, 寇菲菲.
基于无监督集群级的科技论文异质图节点表示学习方法
Scientific Paper Heterogeneous Graph Node Representation Learning Method Based onUnsupervised Clustering Level
计算机科学, 2022, 49(9): 64-69. https://doi.org/10.11896/jsjkx.220500196
[2] 黄丽, 朱焱, 李春平.
基于异构网络表征学习的作者学术行为预测
Author’s Academic Behavior Prediction Based on Heterogeneous Network Representation Learning
计算机科学, 2022, 49(9): 76-82. https://doi.org/10.11896/jsjkx.210900078
[3] 徐涌鑫, 赵俊峰, 王亚沙, 谢冰, 杨恺.
时序知识图谱表示学习
Temporal Knowledge Graph Representation Learning
计算机科学, 2022, 49(9): 162-171. https://doi.org/10.11896/jsjkx.220500204
[4] 饶志双, 贾真, 张凡, 李天瑞.
基于Key-Value关联记忆网络的知识图谱问答方法
Key-Value Relational Memory Networks for Question Answering over Knowledge Graph
计算机科学, 2022, 49(9): 202-207. https://doi.org/10.11896/jsjkx.220300277
[5] 吴子仪, 李邵梅, 姜梦函, 张建朋.
基于自注意力模型的本体对齐方法
Ontology Alignment Method Based on Self-attention
计算机科学, 2022, 49(9): 215-220. https://doi.org/10.11896/jsjkx.210700190
[6] 孔世明, 冯永, 张嘉云.
融合知识图谱的多层次传承影响力计算与泛化研究
Multi-level Inheritance Influence Calculation and Generalization Based on Knowledge Graph
计算机科学, 2022, 49(9): 221-227. https://doi.org/10.11896/jsjkx.210700144
[7] 秦琪琦, 张月琴, 王润泽, 张泽华.
基于知识图谱的层次粒化推荐方法
Hierarchical Granulation Recommendation Method Based on Knowledge Graph
计算机科学, 2022, 49(8): 64-69. https://doi.org/10.11896/jsjkx.210600111
[8] 王杰, 李晓楠, 李冠宇.
基于自适应注意力机制的知识图谱补全算法
Adaptive Attention-based Knowledge Graph Completion
计算机科学, 2022, 49(7): 204-211. https://doi.org/10.11896/jsjkx.210400129
[9] 马瑞新, 李泽阳, 陈志奎, 赵亮.
知识图谱推理研究综述
Review of Reasoning on Knowledge Graph
计算机科学, 2022, 49(6A): 74-85. https://doi.org/10.11896/jsjkx.210100122
[10] 邓凯, 杨频, 李益洲, 杨星, 曾凡瑞, 张振毓.
一种可快速迁移的领域知识图谱构建方法
Fast and Transmissible Domain Knowledge Graph Construction Method
计算机科学, 2022, 49(6A): 100-108. https://doi.org/10.11896/jsjkx.210900018
[11] 杜晓明, 袁清波, 杨帆, 姚奕, 蒋祥.
军事指控保障领域命名实体识别语料库的构建
Construction of Named Entity Recognition Corpus in Field of Military Command and Control Support
计算机科学, 2022, 49(6A): 133-139. https://doi.org/10.11896/jsjkx.210400132
[12] 熊中敏, 舒贵文, 郭怀宇.
融合用户偏好的图神经网络推荐模型
Graph Neural Network Recommendation Model Integrating User Preferences
计算机科学, 2022, 49(6): 165-171. https://doi.org/10.11896/jsjkx.210400276
[13] 钟将, 尹红, 张剑.
基于学术知识图谱的辅助创新技术研究
Academic Knowledge Graph-based Research for Auxiliary Innovation Technology
计算机科学, 2022, 49(5): 194-199. https://doi.org/10.11896/jsjkx.210400195
[14] 朱敏, 梁朝晖, 姚林, 王翔坤, 曹梦琦.
学术引用信息可视化方法综述
Survey of Visualization Methods on Academic Citation Information
计算机科学, 2022, 49(4): 88-99. https://doi.org/10.11896/jsjkx.210300219
[15] 梁静茹, 鄂海红, 宋美娜.
基于属性图模型的领域知识图谱构建方法
Method of Domain Knowledge Graph Construction Based on Property Graph Model
计算机科学, 2022, 49(2): 174-181. https://doi.org/10.11896/jsjkx.210500076
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!