计算机科学 ›› 2021, Vol. 48 ›› Issue (6): 175-183.doi: 10.11896/jsjkx.210100101

• 人工智能 • 上一篇    下一篇

基于深度信号处理和堆叠残差GRU的刀具磨损智能预测模型

胡德凤, 张晨曦, 汪世涛, 赵钦佩, 李江峰   

  1. 同济大学软件学院 上海201804
  • 收稿日期:2021-01-13 修回日期:2020-03-11 出版日期:2021-06-15 发布日期:2021-06-03
  • 通讯作者: 李江峰(lijf@tongji.edu.cn)
  • 基金资助:
    上海市自然科学基金(20ZR1460500)

Intelligent Prediction Model of Tool Wear Based on Deep Signal Processing and Stacked-ResGRU

HU De-feng, ZHANG Chen-xi, WANG Shi-tao, ZHAO Qin-pei, LI Jiang-feng   

  1. School of Software Engineering,Tongji University,Shanghai 201804,China
  • Received:2021-01-13 Revised:2020-03-11 Online:2021-06-15 Published:2021-06-03
  • About author:HU De-feng,born in 1995,postgra-duate.Her main research interests include intelligent monitoring and tool wear prediction.(1831596@tongji.edu.cn)
    LI Jiang-feng,born in 1983,associate professor,is a member of China Computer Federation.His main research interests include artificial intelligence and blockchain.
  • Supported by:
    Natural Science Foundation of Shanghai (20ZR1460500).

摘要: 刀具磨损的智能监测是影响现代机械加工业智能化发展进程的重要因素。在机械加工过程中,大多数机床通过使用传感器采集信号,从而建立刀具磨损与传感器信号之间的关系,在不中断加工过程的情况下中实现刀具的磨损预测,根据是否达到磨损阈值来判断是否自动换刀或报警以实现在线智能监控。能否从传感器信号中提取有效的特征信息,并且建立一个快速响应且精确的预测模型是一个亟待解决的问题。因此,针对上述问题,提出了一种基于深度信号处理和堆叠残差GRU的刀具磨损预测模型。在信号处理方面设计了BiGRU-Self Attention(BGSA)模块,利用双向门控循环单元和内部注意力机制来获取动态时序特征,反映出不同特征的影响程度,以提高建模效率。同时,提出堆叠残差GRU(Stacked-ResGRU)模型实现对刀具实时磨损值的预测,通过残差结构优化了网络结构,加快了模型的收敛速度。通过使用公开的数据集,对铣削过程中刀具的磨损状态预测进行实验研究,实验结果验证了该方法的可行性与有效性。通过对实验结果的对比分析可知,所提模型能够有效地表征刀具磨损程度,并大大减小了预测误差,取得了良好的预测效果。

关键词: 残差GRU, 刀具磨损, 内部注意力, 信号处理, 智能监控

Abstract: Intelligent monitoring of tool wear is an important factor affecting the intelligent development of modern machinery industry.Most machining tools collect signals through sensors and establishes their relationship to obtain the tool wear prediction without interrupting the processing process.Automatic tool change or alarm will be carried out according to whether the wear threshold is reached to realize online intelligent monitoring.It is an urgent problem to extract effective feature information from sensor signals and build a model which can predict the tool wear quickly and accurately.Therefore,based on the above problems,this paper proposes a tool wear prediction method based on deep signal processing and Stacked-ResGRU.In signal processing,the BiGRU-Self Attention(BGSA)network combing bidirectional GRU and self-attention is designed to obtain dynamic temporal features and reflect the influence degree of different features,which can improve modeling efficiency.At the same time,the Stacked-ResGRU model is proposed to predict the real-time tool wear value,and the network structure is optimized by residual structure to accelerate the convergence speed of the model.Experimental studies for tool wear prediction in a dry milling operation are conducted to demonstrate the viability of this method.Through the experimental results and comparative analysis,the proposed method can effectively characterize the tool wear degree,greatly reduce the prediction errors,and achieve a precise prediction effect.

Key words: Intelligent monitoring, Residual GRU, Self-attention, Signal processing, Tool wear

中图分类号: 

  • TP181
[1]TETI R,JEMIELNIAK K,O’DONNELL G,et al.Advanced monitoring of machining operations[J].CIRP Annals-Manufacturing Technology,2010,59(2):717-739.
[2]AMBHORE N,KAMBLE D,CHINCHANIKAR S,et al.Tool condition monitoring system:A review[J].Materials Today:Proceedings,2015,2(4/5):3419-3428.
[3]SCHEFFER C,HEYNS P S.An industrial tool wear monito-ring system for interrupted turning[J].Mechanical Systems & Signal Processing,2004,18(5):1219-1242.
[4]HE Y,LING J J,WANG Y L,et al.In-process Tool Wear Monitoring Model Based on LSTM-CNN[J].China Mechanical Engineering,2020,31(16):1959-1967.
[5]FATEMEH A,ANTOINE T,MARC T.Tool condition monitoring using spectral subtraction and convolutional neural networks in milling process[J].The International Journal of Advanced Manufacturing Technology,2018,98(9-12):3217-3227.
[6]XIAO P F,ZHANG C Y,LUO M,et al.Modeling Method for Tool Wear Prediction Based on ADNLSSVM [J].China Mechanical Engineering,2018,29(7):842-849.
[7]DOU J M,XU C W,JIAO S J,et al.An unsupervised online monitoring method for tool wear using a sparse auto-encoder [J].The International Journal of Advanced Manufacturing Techno-logy,2020,106,2493-2507.
[8]AMBADEKAR P K,CHOUDHARI C M.CNN based tool monitoring system to predict life of cutting tool[J].SN Applied Sciences,2020,2(5):860.
[9]ZENG H,THOE T B,LI X,et al.Multi-modal sensing for machine health monitoring in high speed machining[C]//2006 IEEE International Conference on Industrial Informatics.IEEE,2006:1217-1222.
[10]LI X,LIM B S,ZHOU J H,et al.Fuzzy neural network mode-ling for tool wear estimation in dry milling operation[C]//Annual Conference of the Prognostics and Health Management Society.2009.
[11]CAO X C,CHEN B Q,YAO B,et al.Combining translation-invariant wavelet frames and convolutional neural network for intelligent tool wear state identification[J].Computers in Industry,2019,106:71-84.
[12]LIU M K,TSENG Y H,TRAN M Q.Tool wear monitoring and prediction based on sound signal[J].International Journal of Advanced Manufacturing Technology,2019,103:3361-3373.
[13]SHI C M,PANOUTSOS G,LUO B,et al.Using Multiple-Feature-Spaces-Based deep learning for tool condition monitoring in ultraprecision manufacturing[J].IEEE Transactions on Industrial Electronics,2019,66(5):3794-3803.
[14]ZHAO R,YAN R Q,WANG J J,et al.Learning to monitor machine health with convolutional bi-directional LSTM networks[J].Sensors,2017,17(2):273.
[15]FU Y,ZHANG Y,QIAO H Y,et al.Analysis of feature extracting ability for cutting state monitoring using deep belief networks[J].Procedia CIRP,2015,31:29-34.
[16]WU X Q,LI J,JIN Y Q,et al.Modeling and analysis of tool wear prediction based on SVD and BiLSTM[J].The International Journal of Advanced Manufacturing Technology,2020,106(9):4391-4399.
[17]ZHAO R,WANG D Z,YAN R Q,et al.Machine health monitoring using local feature-based gated recurrent unit networks[J].IEEE Transactions on Industrial Electronics,2017,65(2):1539-1548.
[18]BAHDANAU D,CHO K,BENGIO Y.Neural machine translation by jointly learning to align and translate[J].ArXiv:1409.0473,2014.
[19]QIN Y,SONG D J,CHEN H F,et al.A dual-stage attention-
based recurrent neural network for time series prediction[J].ArXiv:1704.02971,2017.
[20]HE K M,ZHANG X Y,REN S Q,et al.Identity mappings in deep residual networks[C]//European Conference on ComputerVision.Springer,Cham,2016.
[21]HE K M,ZHANG X Y,REN S Q,et al.Deep residual learning for image recognition[C]//IEEE Conference on Computer Vision & Pattern Recognition.IEEE Computer Society,2016.
[22]LIU H,SUN J,LIU L,et al.Feature selection with dynamic mutual information[J].Pattern Recognition,2009,42(7):1330-1339.
[23]KINNEY J B,ATWAL G S.Equitability,mutual information,and the maximal information coefficient[J].Proceedings of the National Academy of Sciences,2014,111(9):3354-3359.
[24]VERGA P,STRUBELL E,MCCALLUM A.Simultaneouslyself-attending to all mentions for full-abstract biological relation extraction[J].ArXiv:1802.10569,2018.
[25]VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[C]//Advances in neural information processing systems.2017:5998-6008.
[26]2010 PHM society conference data challenge[OL].https://www.phmsociety.org/competition/phm/10.
[27]AGOGINO A, GOEBEL K. Mill Data Set[EB/OL].http://ti.arc.nasa.gov/project/prognostic-data-repository.
[28]ZHOU J H,PANG C K,LEWIS F,et al.Intelligent diagnosis and prognosis of tool wear using dominant feature identification [J].IEEE Transactions on Industrial Informatics,2009,5(4),454-464.
[29]ZHAI L Y,ER M J,LI X,et al.Intelligent monitoring of surface integrity and cutter degradation in high-speed milling processes [C]//Annual conference of the prognostics and health management society.Portland,Oregon,USA,2010.
[1] 金文清, 韩芳.
一种基于音高显著性增强的主旋律提取方法
Main Melody Extraction Method Based on Saliency Enhancement
计算机科学, 2020, 47(6A): 24-28. https://doi.org/10.11896/JsJkx.191200022
[2] 杨正益,刘博文,任山,衡柟男.
一种改进的形态-小波阈值降噪方法
Improved Morphological-wavelet Threshold De-noising Method
计算机科学, 2018, 45(5): 300-302. https://doi.org/10.11896/j.issn.1002-137X.2018.05.052
[3] 王彦伟,黄正东,马露杰.
基于FFT的三维CAD模型形状描述
Shape Description of 3D CAD Models Using FFT
计算机科学, 2010, 37(7): 251-254259.
[4] 冀映辉,张建东,蔡炜,蔡惠智.
基于RDMA的Rapidl0用户态通信接口实现
RapidIO User-level Communication Interface Realization Based on RDMA
计算机科学, 2010, 37(6): 293-296.
[5] 李育贤.
基于IP技术的智能监控系统研究

计算机科学, 2008, 35(7): 99-100.
[6] 楼天良.
快速傅里叶变换的DSP实现及代码优化

计算机科学, 2008, 35(7): 255-256.
[7] 何俊梅 邹显春.
异构分布式DSP系统中的针对简单路径DFG的有效资源分配策略

计算机科学, 2007, 34(7): 282-283.
[8] 刘洋 李玉山 张大朴.
基于色度畸变和纹理特征的阴影消除方法

计算机科学, 2005, 32(9): 211-214.
[9] 郑武 余胜生 周敬利 陈加忠.
一种对称/反对称正交平衡多小波的构造方法及其在图像压缩中的应用研究

计算机科学, 2004, 31(12): 154-158.
[10] 刘海林 谢胜利 章晋龙.
微延迟病态卷积混叠盲源分离的可分性研究

计算机科学, 2003, 30(7): 170-171.
[11] 刘红卫 王新辉 刘三阳.
多用户检测问题的半定规划坐标下降算法

计算机科学, 2003, 30(5): 134-135.
[12] 彭艺 周正中 等.
基于计算机网络的下一代软件无线电

计算机科学, 2003, 30(3): 105-107.
[13] 王金根 陈世福 龚沈光 陈兆乾.
一种基于扩展交替投影神经网络的弱信号分离方法研究

计算机科学, 2003, 30(10): 64-66.
[14] 王昆仑.
一种基于声音信号形态特征参数的压缩算法及其分析

计算机科学, 2002, 29(9): 82-85.
[15] 钱小军 周建辉 潘雪增 平玲娣.
一种新型的动态时间弯曲方法

计算机科学, 2002, 29(9): 69-70.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!