计算机科学 ›› 2021, Vol. 48 ›› Issue (11A): 244-250.doi: 10.11896/jsjkx.210100211

• 大数据&数据科学 • 上一篇    下一篇

知识图谱嵌入的高阶协同过滤推荐系统

徐兵1, 弋沛玉1, 王金策2, 彭舰1   

  1. 1 四川大学计算机学院 成都610065
    2 山西能源学院计算机与信息工程系 山西 晋中030600
  • 出版日期:2021-11-10 发布日期:2021-11-12
  • 通讯作者: 彭舰(jianpeng@scu.edu.cn)
  • 作者简介:1064937023@qq.com
  • 基金资助:
    四川省重点研发计划(2020YFG0089);四川大学-自贡市校地科技合作专向基金(2018CDZG-15);山西省青年科技研究基金项目(201801D221176)

High-order Collaborative Filtering Recommendation System Based on Knowledge Graph Embedding

XU Bing1, YI Pei-yu1, WANG Jin-ce2, PENG Jian1   

  1. 1 College of Computer Science,Sichuan University,Chengdu 610065,China
    2 Department of Computer and Information Engineering,Shanxi Institute of Energy,Jinzhong,Shanxi 030600,China
  • Online:2021-11-10 Published:2021-11-12
  • About author:XU Bing,born in 1989,M.S.candidate.His main research interests include data mining and recommendation system.
    PENG Jian,born in 1970,Ph.D,professor,Ph.D supervisor,is a outstanding member of China Computer Federation.He main research interests include big data and wireless sensor network.
  • Supported by:
    Key R&D Program of Sichuan Province,China(2020YFG0089),University-Local Science and Technology Coo-peration Foundation of Sichuan University-Zigong(2018CDZG-15) and Natural Science Foundation for Young Scientists of Shanxi Province,China(201801D221176).

摘要: 针对推荐系统存在的数据稀疏问题,传统的协同过滤方法无法捕捉辅助信息之间的相关性,从而降低了推荐的准确度,文中提出KGE-CF模型,引入了知识图谱作为辅助信息,利用知识图谱中多源结构性的数据来缓解数据稀疏问题。KGE-CF结合多层感知机捕获高阶非线性特征的能力,能够学习出用户与项目更深层次的交互信息,从而提升推荐质量。首先,KGE-CF模型将用户的历史交互项目与知识图谱中的实体进行映射,并且利用知识图谱的翻译模型进行训练,得到实体嵌入向量与关系向量,并依据“兴趣迁移”思想进一步学习出更为丰富的用户向量;然后,模型将学习得到的用户向量与项目向量拼接,作为多层感知机的输入,捕捉用户与项目之间的高阶特征信息;最后,通过一个sigmoid函数得到用户对候选项目的偏好程度。通过在真实数据集上的实验,证明了提出的KGE-CF模型在点击率预测和top-k两种推荐场景下均优于其他方法。

关键词: 多层感知机, 数据稀疏性, 推荐系统, 协同过滤, 知识图谱

Abstract: For the problem of data sparsity in recommendation systems,traditional collaborative filtering methods fail to capture the correlations between auxiliary information,which decreases the accuracy of recommendation.In this paper,we propose the KGE-CF model by introducing the knowledge graph as auxiliary information,and utilizing the multi-source structured data in knowledge graph to effectively alleviate data sparsity.KGE-CF integrates multi-layer perceptron to capture the high-order nonli-near features to learn deeper interaction information between users and items,which can improve the quality of recommendation.Specifically,we first map the user's historical interaction items with the corresponding entities in the knowledge graph,and use the translation model of the knowledge graph for training,through that we can get the entity embedding vector and the relation embedding vector,moreover the model can learn a richer user vector by interest disseminating.Then,after concatenating the obtained user vector and the item vector,we send it into the multi-layer perceptron to capture the high-order feature information between the user and the item.Finally,a sigmoid function is used to obtain the user's preference probability for candidate items.The experimental results on the real-world datasets prove that the proposed KGE-CF model in this paper has achieved the best recommendation performance than state-of-art methods.

Key words: Collaborative filtering, Data sparsity, Knowledge graph, Multi-layer perceptron, Recommendation system

中图分类号: 

  • TP3
[1]MARTÍNEZ L,PÉREZ L G,BARRANCO M.A multigranular linguistic content-based recommendation model[J].International Journal of Intelligent Systems,2007,22(5):419-434.
[2]SU X,KHOSHGOFTAAR T M.A survey of collaborative filtering techniques[J/OL].Advances in Artificial Intelligence,2009.https://doi.org/10.1155/20091421425.
[3]NILASHI M,BIN IBRAHIM O,ITHNIN N.Hybrid recom-mendation approaches for multi-criteria collaborative filtering[J].Expert Systems with Applications,2014,41(8):3879-3900.
[4]HE X,LIAO L,ZHANG H,et al.Neural collaborative filtering[C]//Proceedings of the 26th International Conference on World Wide Web.2017:173-182.
[5]WANG H,ZHANG F,WANG J,et al.Ripplenet:Propagatinguser preferences on the knowledge graph for recommender systems[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management.2018:417-426.
[6]CHENG H T,KOC L,HARMSEN J,et al.Wide & deep learning for recommender systems[C]//Proceedings of the 1st Workshop on Deep Learning for Recommender Systems.2016:7-10.
[7]GUO H,TANG R,YE Y,et al.DeepFM:a factorization-machine based neural network for CTR prediction[J].arXiv:1703.04247,2017.
[8]HE X,CHUA T S.Neural factorization machines for sparse predictive analytics[C]//Proceedings of the 40th International ACM SIGIR conference on Research and Development in Information Retrieval.2017:355-364.
[9]SEDHAIN S,MENON A K,SANNER S,et al.Autorec:Autoencoders meet collaborative filtering[C]//Proceedings of the 24th international conference on World Wide Web.2015:111-112.
[10]DEVOOGHT R,BERSINI H.Long and short-term recommendations with recurrent neural networks[C]//Proceedings of the 25th Conference on User Modeling,Adaptation and Personalization.2017:13-21.
[11]ZHANG F,YUAN N J,LIAN D,et al.Collaborative knowledge base embedding for recommender systems[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2016:353-362.
[12]LIN Y,LIU Z,SUN M,et al.Learning entity and relation embeddings for knowledge graph completion[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2015:2181-2187.
[13]WANG H,ZHANG F,XIE X,et al.DKN:Deep knowledge-aware network for news recommendation[C]//Proceedings of the 2018 World Wide Web Conference.2018:1835-1844.
[14]JI G,HE S,XU L,et al.Knowledge graph embedding via dynamic mapping matrix[C]//Proceedings of the 53rd Nnnual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (volume 1:Long papers).2015:687-696.
[15]WANG H,ZHANG F,ZHAO M,et al.Multi-task feature learning for knowledge graph enhanced recommendation[C]//The World Wide Web Conference.2019:2000-2010.
[16]SUN Z,YANG J,ZHANG J,et al.Recurrent knowledge graph embedding for effective recommendation[C]//Proceedings of the 12th ACM Conference on Recommender Systems.2018:297-305.
[17]WANG X,WANG D,XU C,et al.Explainable reasoning overknowledge graphs for recommendation[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2019,33(1):5329-5336.
[18]CAO Y,WANG X,HE X,et al.Unifying knowledge graphlearning and recommendation:Towards a better understanding of user preferences[C]//The World Wide Web Conference.2019:151-161.
[19]ZHAO W X,HE G,YANG K,et al.Kb4rec:A data set for linking knowledge bases with recommender systems[J].Data Intelligence,2019,1(2):121-136.
[20]RENDLE S,FREUDENTHALER C,GANTNER Z,et al.BPR:Bayesian personalized ranking from implicit feedback[J].arXiv:1205.2618,2012.
[1] 饶志双, 贾真, 张凡, 李天瑞.
基于Key-Value关联记忆网络的知识图谱问答方法
Key-Value Relational Memory Networks for Question Answering over Knowledge Graph
计算机科学, 2022, 49(9): 202-207. https://doi.org/10.11896/jsjkx.220300277
[2] 吴子仪, 李邵梅, 姜梦函, 张建朋.
基于自注意力模型的本体对齐方法
Ontology Alignment Method Based on Self-attention
计算机科学, 2022, 49(9): 215-220. https://doi.org/10.11896/jsjkx.210700190
[3] 孔世明, 冯永, 张嘉云.
融合知识图谱的多层次传承影响力计算与泛化研究
Multi-level Inheritance Influence Calculation and Generalization Based on Knowledge Graph
计算机科学, 2022, 49(9): 221-227. https://doi.org/10.11896/jsjkx.210700144
[4] 程章桃, 钟婷, 张晟铭, 周帆.
基于图学习的推荐系统研究综述
Survey of Recommender Systems Based on Graph Learning
计算机科学, 2022, 49(9): 1-13. https://doi.org/10.11896/jsjkx.210900072
[5] 王冠宇, 钟婷, 冯宇, 周帆.
基于矢量量化编码的协同过滤推荐方法
Collaborative Filtering Recommendation Method Based on Vector Quantization Coding
计算机科学, 2022, 49(9): 48-54. https://doi.org/10.11896/jsjkx.210700109
[6] 徐涌鑫, 赵俊峰, 王亚沙, 谢冰, 杨恺.
时序知识图谱表示学习
Temporal Knowledge Graph Representation Learning
计算机科学, 2022, 49(9): 162-171. https://doi.org/10.11896/jsjkx.220500204
[7] 秦琪琦, 张月琴, 王润泽, 张泽华.
基于知识图谱的层次粒化推荐方法
Hierarchical Granulation Recommendation Method Based on Knowledge Graph
计算机科学, 2022, 49(8): 64-69. https://doi.org/10.11896/jsjkx.210600111
[8] 方义秋, 张震坤, 葛君伟.
基于自注意力机制和迁移学习的跨领域推荐算法
Cross-domain Recommendation Algorithm Based on Self-attention Mechanism and Transfer Learning
计算机科学, 2022, 49(8): 70-77. https://doi.org/10.11896/jsjkx.210600011
[9] 帅剑波, 王金策, 黄飞虎, 彭舰.
基于神经架构搜索的点击率预测模型
Click-Through Rate Prediction Model Based on Neural Architecture Search
计算机科学, 2022, 49(7): 10-17. https://doi.org/10.11896/jsjkx.210600009
[10] 齐秀秀, 王佳昊, 李文雄, 周帆.
基于概率元学习的矩阵补全预测融合算法
Fusion Algorithm for Matrix Completion Prediction Based on Probabilistic Meta-learning
计算机科学, 2022, 49(7): 18-24. https://doi.org/10.11896/jsjkx.210600126
[11] 孙晓寒, 张莉.
基于评分区域子空间的协同过滤推荐算法
Collaborative Filtering Recommendation Algorithm Based on Rating Region Subspace
计算机科学, 2022, 49(7): 50-56. https://doi.org/10.11896/jsjkx.210600062
[12] 王杰, 李晓楠, 李冠宇.
基于自适应注意力机制的知识图谱补全算法
Adaptive Attention-based Knowledge Graph Completion
计算机科学, 2022, 49(7): 204-211. https://doi.org/10.11896/jsjkx.210400129
[13] 马瑞新, 李泽阳, 陈志奎, 赵亮.
知识图谱推理研究综述
Review of Reasoning on Knowledge Graph
计算机科学, 2022, 49(6A): 74-85. https://doi.org/10.11896/jsjkx.210100122
[14] 邓凯, 杨频, 李益洲, 杨星, 曾凡瑞, 张振毓.
一种可快速迁移的领域知识图谱构建方法
Fast and Transmissible Domain Knowledge Graph Construction Method
计算机科学, 2022, 49(6A): 100-108. https://doi.org/10.11896/jsjkx.210900018
[15] 杜晓明, 袁清波, 杨帆, 姚奕, 蒋祥.
军事指控保障领域命名实体识别语料库的构建
Construction of Named Entity Recognition Corpus in Field of Military Command and Control Support
计算机科学, 2022, 49(6A): 133-139. https://doi.org/10.11896/jsjkx.210400132
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!