计算机科学 ›› 2018, Vol. 45 ›› Issue (7): 99-103.doi: 10.11896/j.issn.1002-137X.2018.07.016

• 网络与通信 • 上一篇    下一篇

非基于测距的压缩感知多测量向量目标定位

郭艳,杨思星,李宁,孙保明,钱鹏   

  1. 陆军工程大学通信工程学院 南京210007
  • 收稿日期:2017-06-08 出版日期:2018-07-30 发布日期:2018-07-30
  • 作者简介:郭 艳(1971-),女,博士,教授,博士生导师,主要研究方向为波束形成、MIMO、认知无线电、无线传感器网络定位、自适应信号处理等,E-mail:guoyan_2000@sina.com;杨思星(1992-),女,硕士生,主要研究方向为压缩感知、信号处理等,E-mail:875413714@qq.com(通信作者);李 宁(1967-),男,副教授,硕士生导师,主要研究方向为Ad hoc网络、无线认知网络;孙保明(1989-),男,博士生,主要研究方向为信号处理、压缩感知等;钱 鹏(1991-),男,硕士,主要研究方向为传感器网络定位、压缩感知等。
  • 基金资助:
    本文受国家自然科学基金项目(61571463,61371124,61472445),江苏省自然科学基金(BK20171401)资助。

Range-free Localization Based on Compressive Sensing Using Multiple Measurement Vectors

GUO Yan, YANG Si-xing, LI Ning, SUN Bao-ming, QIAN Peng   

  1. Institute of Communication Engineering,Army Engineering University of PLA,Nanjing 210007,China
  • Received:2017-06-08 Online:2018-07-30 Published:2018-07-30

摘要: 传统的压缩感知定位方法大多是基于测距的,需要获得目标的精确定位信息,并不适用于资源受限的低损耗无线传感器网络。提出一种非基于测距的压缩感知多测量向量目标定位方法,能够大大降低对网络硬件的要求。该算法一方面根据传感器获得的目标连通性信息,设计了非基于测距的压缩感知定位模型;另一方面采用对定位区域进行动态感知的方法,解决了非基于测距的定位中定位精度不高的问题。该算法能够同时处理多组测量数据,且操作简单,适用性强。仿真证明,该算法具有较好的定位精确性和鲁棒性。

关键词: 多测量向量, 多目标定位, 非基于测距, 压缩感知

Abstract: Conventional compressive sensing based localization algorithms are always range-based,and need the accurate information of targets.As a result,they can not be applied in the low-lost system.This paper proposed a range-free localization algorithm beyond connectivity using multiple measurement vectors,which can largely reduce the localization errors.On one hand,this paper designed a new localization model for the range-free localization beyond wireless connectivity.On the other hand,it attempted to obtain multiple localization information in the area adaptively to improve the localization accuracy.The proposed algorithm is easy to operate and can be widely applied.Finally,it is proved that the new method has high accuracy and robustness.

Key words: Compressive sensing, Multiple measurement vectors, Multiple target localization, Range-free

中图分类号: 

  • TP393
[1]PANWAR A,KUMAR S A.Localization schemes in wireless sensor networks[C]∥2012 Second International Conference on Advanced Computing & Communication Technologies (ACCT).IEEE,2012:443-449.
[2]LIU H,DARABI H,BANERJEE P,et al.Survey of WirelessIndoor Positioning Techniques and Systems[J].IEEE Transactions on Systems Man & Cybernetics Part C Applications & Reviews,2007,37(6):1067-1080.
[3]QIAN P,GUO Y,LI N,et al.Multiple target localization and power estimation in wireless sensor networks using compressive sensing[C]∥International Conference on Wireless Communications & Signal Processing.IEEE,2015:1-5.
[4]HE T,et al.Range-free localization schemes for large scale sensor networks[C]∥International Conference on Mobile Computing and Networking(MOBICOM 2003).San Diego,CA,USA,2003:81-95.
[5]CAND S E J.Compressive sampling[C]∥Proceedings of the International Congress of Mathematicians.2006:1433-1452.
[6]SHI G M,LIU D H,GAO D H,et al.Advances in theory and application of compressed sensing[J].Acta Electronica Sinica,2009,37(5):1070-1081.(in Chinese)
石光明,刘丹华,高大化,等.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081.
[7]FENG C,VALALEE S,TAN Z.Multiple target localizationusing compressive sensing[C]∥ IEEE Conference on Global Te-lecommunications.IEEE Press,2009:4356-4361.
[8]XIN K,CHENG P,CHEN J.Multi-target localization in wireless sensor networks:a compressive sampling-based approach[J].Wireless Communications & Mobile Computing,2013,15(5):801-811.
[9]ZHONG Z,HE T.RSD:A metric for achieving range-free localization beyond connectivity[J].IEEE Transactions on Parallel and Distributed Systems,2011,22(11):1943-1951.
[10]ZAIDI S,El ASSAF A,AFFES S,et al.Accurate range-free localization in multi-hop wireless sensor networks[J].IEEE Transactions on Communications,2016,64(9):3886-3900.
[11]CHEN J,HUO X.Theoretical results on sparse representations of multiple-measurement vectors[J].IEEE Transactions on Signal Processing,2006,54(12):4634-4643.
[12]DAVIES M E,ELDAR Y C.Rank awareness in joint sparse recovery[J].IEEE Transactions on Information Theory,2012,58(2):1135-1146.
[13]CANDES E J,WAKIN M B,BOYD S.Enhancing sparsity by reweighted minimization[J].Journal of Fourier Analysis and Applications,2008,14(5):877-905.
[14]CANDES E J,TAO T.Decoding by linear programming [J].IEEE Transactions on Information Theory,2005,51(12):4203-4215.
[15]ZHANG B,CHENG X,ZHANG N,et al.Sparse target counting and localization in sen-sor networks based on compressive sen-sing[C]∥INFOCOM.2011:2255-2263.
[16]TROPP A,GILBERT A.Signal recovery from random measurements via orthogonal matching pursuit[J].IEEE Transactions on Information Theory,2007,53(12):4655-4666.
[17]DONOHO D L,TSAIG Y,DRORI I,et al.Sparse solution ofunderdetermined linear equations by stagewise orthogonal matching pursuit [J].IEEE Transactions on Information Theory,2012,58(2):1094-1121.
[1] 刘玉红,刘树英,付福祥.
基于卷积神经网络的压缩感知重构算法优化
Optimization of Compressed Sensing Reconstruction Algorithms Based on Convolutional Neural Network
计算机科学, 2020, 47(3): 143-148. https://doi.org/10.11896/jsjkx.190100199
[2] 田伟, 刘浩, 陈根龙, 宫晓蕙.
面向分块压缩感知的交叉子集导引自适应观测
Cross Subset-guided Adaptive Measurement for Block Compressive Sensing
计算机科学, 2020, 47(12): 190-196. https://doi.org/10.11896/jsjkx.200800197
[3] 吴学林, 朱荣, 郭迎.
基于块稀疏贝叶斯模型的鬼成像重构算法
Ghost Imaging Reconstruction Algorithm Based on Block Sparse Bayesian Model
计算机科学, 2020, 47(11A): 188-191. https://doi.org/10.11896/jsjkx.200200058
[4] 许锋, 孙洁, 刘世杰.
基于遗传算法的声场重构测量优化方法
Sampling Optimization Method for Acoustic Field Reconstruction Based on Genetic Algorithm
计算机科学, 2020, 47(11): 304-309. https://doi.org/10.11896/jsjkx.200600167
[5] 侯明星,亓慧,黄斌科.
基于分布式压缩感知的无线传感器网络异常数据处理
Data Abnormality Processing in Wireless Sensor Networks Based on Distributed Compressed Sensing
计算机科学, 2020, 47(1): 276-280. https://doi.org/10.11896/jsjkx.180901667
[6] 蒋敏, 孟志青, 沈瑞.
压缩感知问题的目标罚函数交替随机搜索方法
Alternate Random Search Algorithm of Objective Penalty Function for Compressed Sensing Problem
计算机科学, 2019, 46(6A): 133-137.
[7] 宋晓祥, 郭艳, 李宁, 王萌.
基于压缩感知的时间序列缺失数据预测算法
Missing Data Prediction Based on Compressive Sensing in Time Series
计算机科学, 2019, 46(6): 35-40. https://doi.org/10.11896/j.issn.1002-137X.2019.06.004
[8] 李秀琴, 王天荆, 白光伟, 沈航.
基于压缩感知的两阶段多目标定位算法
Two-phase Multi-target Localization Algorithm Based on Compressed Sensing
计算机科学, 2019, 46(5): 50-56. https://doi.org/10.11896/j.issn.1002-137X.2019.05.007
[9] 吴健, 孙保明.
无线传感器网络中基于字典优化的压缩感知定位方法
Dictionary Refinement-based Localization Method Using Compressive Sensing inWireless Sensor Networks
计算机科学, 2019, 46(4): 118-122. https://doi.org/10.11896/j.issn.1002-137X.2019.04.019
[10] 王鹏飞, 张杭.
欠定条件下基于主成分的亚采样信号重构
Sub-sampling Signal Reconstruction Based on Principal Component Under Underdetermined Conditions
计算机科学, 2019, 46(10): 103-108. https://doi.org/10.11896/jsjkx.190700195
[11] 衡阳, 陈峰, 徐剑峰, 汤敏.
基于压缩感知的心脏磁共振快速成像的应用现状与发展趋势
Application Status and Development Trends of Cardiac Magnetic Resonance Fast Imaging Based on Compressed Sensing Theory
计算机科学, 2019, 46(1): 36-44. https://doi.org/10.11896/j.issn.1002-137X.2019.01.006
[12] 杜秀丽, 胡兴, 陈波, 邱少明.
基于加权非局部相似性的视频压缩感知多假设重构算法
Multi-hypothesis Reconstruction Algorithm of DCVS Based on Weighted Non-local Similarity
计算机科学, 2019, 46(1): 291-296. https://doi.org/10.11896/j.issn.1002-137X.2019.01.045
[13] 杨思星, 郭艳, 李宁, 孙保明, 钱鹏.
基于数据融合的压缩感知多目标定位算法
Compressive Sensing Multi-target Localization Algorithm Based on Data Fusion
计算机科学, 2018, 45(9): 161-165. https://doi.org/10.11896/j.issn.1002-137X.2018.09.026
[14] 杜秀丽, 张薇, 顾斌斌, 陈波, 邱少明.
基于灰度共生矩阵的图像自适应分块压缩感知方法
GLCM-based Adaptive Block Compressed Sensing Method for Image
计算机科学, 2018, 45(8): 277-282. https://doi.org/10.11896/j.issn.1002-137X.2018.08.050
[15] 王福驰,赵志刚,刘馨月,吕慧显,王国栋,解昊.
一种改进的稀疏度自适应匹配追踪算法
Improved Sparsity Adaptive Matching Pursuit Algorithm
计算机科学, 2018, 45(6A): 234-238.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!