计算机科学 ›› 2018, Vol. 45 ›› Issue (11A): 76-83.

• 综述研究 • 上一篇    下一篇

软件成本评估方法综述

赵小敏, 费梦钰, 曹光斌, 朱李楠   

  1. 浙江工业大学计算机科学与技术学院 杭州310023
  • 出版日期:2019-02-26 发布日期:2019-02-26
  • 通讯作者: 朱李楠(1982-),男,博士,讲师,主要研究方向为云制造、制造业信息化等,E-mail:zln@zjut.edu.cn
  • 作者简介:赵小敏(1976-),博士,副教授,CCF会员,主要研究方向为无线传感器网络、信息安全、软件成本评估等,E-mail:zxm@zjut.edu.cn;费梦钰(1992-),女,硕士生,主要研究方向为软件成本评估;曹光斌(1992-),男,硕士生,主要研究方向为软件成本评估
  • 基金资助:
    本文受国家自然科学基金(61701443)资助。

Review for Software Cost Evaluation Methods

ZHAO Xiao-min, FEI Meng-yu, CAO Guang-bin, ZHU Li-nan   

  1. College of Computer Science and Technology,Zhejiang University of Technology,Hangzhou 310023,China
  • Online:2019-02-26 Published:2019-02-26

摘要: 如何做好软件项目预算一直是政府机关、企事业单位进行信息化建设的难题之一。软件成本评估是通过一套流程或模型对软件项目开发的工作量、工期和成本进行评估的行为,可以提高软件预算的精确度,有利于保障软件项目的交付周期,合理安排和调度研发人员。首先,对软件成本评估方法进行分类介绍和对比,分析其优缺点;然后,采用软件项目样本数据,对功能点、用例点、神经网络、类推4种评估方法进行实验分析;最后,指出现有的软件成本评估方法存在的问题和进一步研究的方向。

关键词: 软件成本评估, 功能点, 用例点, 神经网络, 类推

Abstract: How to do a good job of software project budget has always been one of the difficult problems in the information construction of government agencies,enterprises and institutions.Software cost assessment is a behavior that evalua-tes development effort,time limit and cost of software project through a set of processes or models.It can improve the accuracy of software budget,protect the delivery cycle of software project,and arrange and schedule the research and development programmer reasonably.First of all,the software cost assessment methods were classified and compared,and their advantages and disadvantages were analyzed.Then,the experiment and analysis of four evaluation methods,including function point,use case point,neural network and analogy,were carried out with the sample data of the software project.Finally,the existing problems of the existing software cost assessment methods and the direction of further research were pointed out.

Key words: Software cost assessment, Function point, Use case point, Neural network, Analogy

中图分类号: 

  • TP311
[1]RONALD J.Software cost estimation[J].Information & Software Technology,1992,34(92):627-639.
[2]KEMERER C F.An empirical validation of software cost estimation models[M].ACM,1987:416-429.
[3]SYMONS C R.Function Point Analysis:Difficulties and Im-provements[J].IEEE Transactions on Software Engineering,1988,14(1):2-11.
[4]软件研发成本度量规范:SJ/T 11463-2013[S].北京:中华人民共和国工业和信息化部,2013.
[5]政府投资应用软件开发项目价格评估及计算方法:DB44/T 635-2009[S].广东:广东省质量技术监督局,2009.
[6]信息化项目软件开发费用测算规范:DB11/T 1010-2013[S].北京:北京市质量技术监督局,2013.
[7]中国软件行业基准数据:CSBMK-201710[S].北京:工业和信息化部电子工业标准化研究院,2017.
[8]KARNER G.Resource estimation for objectory projects[J].Objective Systems SF AB,1993,9:1-9.
[9]HEIAT A,COMPARISO KUMAR K V,RAVI V,et al.Soft-ware development cost estimation using wavelet neural networks[J].Journal of Systems and Software,2008,81(11):1853-1867.
[10]WEN J,LI S,LIN Z,et al.Systematic literature review of machine learning based software development effort estimation models[J].Information & Software Technology,2012,54(1):41-59.
[11]KUMAR G,BHATIA P K.Empirical Assessment and Optimization of Software Cost Estimation Using Soft Computing Techniques[M]∥Advanced Computing and Communication Technologies.Singapore:Springer,2016.
[12]SEHRA S K,BRAR Y S,KAUR N,et al.Research Patterns and Trends in Software Effort Estimation[J].Information & Software Technology,2017,91:1-21.
[13]IDRI A,HOSNI M,ABRAN A.Systematic literature review of ensemble effort estimation[M].Elsevier Science Inc,2016:151-175.
[14]USMAN M,MENDES E.Effort estimation in agile software development:a survey on the state of the practice[C]∥International Conference on Evaluation and Assessment in Software Engineering.ACM,2015:12.
[15]WU H,SHI L,CHEN C,et al.Maintenance Effort Estimation for Open Source Software:A Systematic Literature Review[C]∥IEEE International Conference on Software Maintenance and Evolution.IEEE,2017:32-43.
[16]TAN C H,YAP K S,YAP H J.Application of genetic algorithm for fuzzy rules optimization on semi expert judgment automation using Pittsburg approach[J].Applied Soft Computing,2012,12(8):2168-2177.
[17]BOEHM B,CLARK B,HOROWITZ E,et al.Cost models for future software life cycle processes:COCOMO2.0[J].Annals of Software Engineering,1995,1(1):57-94.
[18]DU W L,HO D,CAPRETZ L F.Improving Software Effort Estimation Using Neuro-Fuzzy Model with SEER-SEM[J].Computer Science,2015,10(12):51-63.
[19]PHONGPAIBUL M,AROONVATANAPORN P.Standardized cost estimation in Thai government’s software development projects[C]∥2015 International Conference on Computer Science and Engineering Conference (ICSEC).IEEE,2015:1-6.
[20]JONES C.Software Industry Goals for the Years 2014 through 2018[J].Journal of Cost Analysis & Parametrics,2014,7(1):41-47.
[21]ALBRECHT A J.Measuring Application Development Productivity[C]∥IBM Applications Development Joint Share/guide Symposium.1979:83-92.
[22]BUNDSCHUH M,DEKKERS C.Variants of the IFPUG Function Point Counting Method[M]∥The IT Measurement Compendium.Springer Berlin Heidelberg,2008:397-407.
[23]HUANCA L M,ORE S B.Factors affecting the accuracy of effort estimation in software projects using Use Case Points[J].RISTI-Revista Iberica de Sistemas e Tecnologias de Informacao,2017,2017(21):18-32.
[24]BADRI M,BADRI L,FLAGEOL W,et al.Source code size prediction using use case metrics:an empirical comparison with use case points[J].Innovations in Systems & Software Enginee-ring,2016,13(2-3):1-17.
[25]SILHAVY P,SILHAVY R,PROKOPOVA Z.Evaluation of Data Clustering for Stepwise Linear Regression on Use Case Points Estimation[M]∥Software Engineering Trends and Techniques in Intelligent Systems.Springer,2017:491-496.
[26]NASSIF A B,HO D,CAPRETZ L F.Towards an early software estimation using log-linear regression and a multilayer perceptron model[J].Journal of Systems & Software,2013,86(1):144-160.
[27]RIJWANI P,JAIN S.Enhanced Software Effort Estimation Using Multi Layered Feed Forward Artificial Neural Network Technique[J].Procedia Computer Science,2016,89:307-312.
[28]KAUSHIK A,SONI A K,SONI R.An improved functional link artificial neural networks with intuitionistic fuzzy clustering for software cost estimation[J].International Journal of System Assurance Engineering & Management,2014,7:1-12.
[29]SONG L,MINKU L L,YAO X.The impact of parameter tuning on software effort estimation using learning machines[C]∥International Conference on Predictive MODELS in Software Engineering.2013:1-10.
[30]MENDES E,WATSON I,TRIGGS C,et al.A Comparison of Development Effort Estimation Techniques for Web Hypermedia Applications[C]∥International Symposium on Software Metrics.IEEE Computer Society,2002:131.
[31]GHAREHCHOPOGH F S,POURALI A.A new approach based on continuous genetic algorithm in software cost estimation[J].Journal of Scientific Research and Development,2015,2(4):87-94.
[32]RAO G S,KRISHNA C V P,RAO K R.Multi Objective Particle Swarm Optimization for Software Cost Estimation[M]∥ICT and Critical Infrastructure:Proceedings of the 48th Annual Convention of Computer Society of India- Vol I.Springer International Publishing,2014:125-132.
[33]KUMARI S,PUSHKAR S.Software Cost Estimation Using Cuckoo Search[M]∥Advances in Computational Intelligence.Singapore:Springer,2017:167-175.
[34]DU W L,CAPRETZ L F,NASSIF A B,et al.A Hybrid Intelligent Model for Software Cost Estimation[J].Journal of Computer Science,2013,9(11):1506-1513.
[35]MITTAL A,PARKASH K,MITTAL H.Software cost estimation using fuzzy logic[J].Acm Sigsoft Software Engineering Notes,2010,35(1):1-7.
[36]SARNO R,SIDABUTAR J,SARWOSR I.Comparison of dif-ferent Neural Network architectures for software cost estimation[C]∥International Conference on Computer,Control,Informatics and ITS Applications.IEEE,2016:68-73.
[37]BENALA T R,CHINNABABU K,MALL R,et al.A Particle Swarm Optimized Functional Link Artificial Neural Network (PSO-FLANN) in Software Cost Estimation[M]∥Proceedings of the International Conference on Frontiers of Intelligent Computing:Theory and Applications (FICTA).Berlin:Springer,2013:59-66.
[38]ARAR,FARUK M,AYAN K.Software defect prediction using cost-sensitive neural network[M].Elsevier Science Publishers B V,2015:263-277.
[39]WANI Z H,QUADRI S M K.Artificial Bee Colony-Trained Functional Link Artificial Neural Network Model for Software Cost Estimation[C]∥Proceedings of Fifth International Confe-rence on Soft Computing for Problem Solving.2016:729-741.
[40]ATTARZADEH I,OW S H.Proposing a New Software Cost estimation Model Based on Artificial Neural Networks[J].Ssrn Electronic Journal,2010,3:V3-487-V3-491.
[41]AZZEH M,NASSIF A B.A hybrid model for estimating software project effort from Use Case Points[J].Applied Soft Computing,2016,49:981-989.
[42]NASSIF A B,CAPRETZ L F,HO D,et al.A Treeboost Model for Software Effort Estimation Based on Use Case Points[C]∥International Conference on Machine Learning and Applications.IEEE Computer Society,2012:314-319.
[43]SATAPATHY S M,ACHARYA B P,RATH S K.Early stage software effort estimation using random forest technique based on use case points[J].IET Software,2016,10(1):10-17.
[44]GHAREHCHOPOGH F S,MALEKI I,TALEBI A.Using Hybrid Model of Artificial Bee Colony and Genetic Algorithms in Software Cost Estimation[C]∥2015 9th International Con-ference on Application of Information and Communication Technologies (AICT).IEEE,2015:102-106.
[45]JAFARI S M S,ZIAADDINI F.Optimization of software cost estimation using harmony search algorithm[C]∥Swarm Intelligence and Evolutionary Computation.IEEE,2016:131-135.
[46]MITTAS N,ANGELIS L.LSEbA:least squares regression and estimation by analogy in a semi-parametric model for software cost estimation[J].Empirical Software Engineering,2010,15(5):523-555.
[47]李效云,杨达,杨叶.一种改进的类推估算方法及案例研究[J].计算机应用与软件,2011,28(7):5-9.
[48]IDRI A,AMAZAL F A,ABRAN A.Analogy-based software development effort estimation:A systematic mapping and review[J].Information & Software Technology,2014,58:206-230.
[49]BARDSIRI V K,JAWAWI D N,HASHIM S Z,et al.A PSO-based model to increase the accuracy of software development effort estimation[J].Software Quality Journal,2013,21(3):501-526.
[50]IDRI A,HOSNI M,ABRAN A.Improved estimation of soft-ware development effort using Classical and Fuzzy Analogy ensembles[J].Applied Soft Computing,2016,49:990-1019.
[51]HUANG Z.Clustering Large Data Sets With Mixed Numeric and Categorical Values[EB/OL].http://www.doc88.com/P-7728902324900.html.
[52]BISHNU P S,BHATTACHERJEE V.Software cost estimation based on modified K-Modes clustering Algorithm[J].Natural Computing,2016(3):1-8.
[53]KASHYAP D,MISRA A K.Software Cost Estimation Using Similarity Difference Between Software Attributes[J].Advances in Intelligent Systems & Computing,2013,236:1-6.
[1] 余雪勇, 陈涛. 边缘计算场景中基于虚拟映射的隐私保护卸载算法[J]. 计算机科学, 2021, 48(1): 65-71.
[2] 单美静, 秦龙飞, 张会兵. L-YOLO:适用于车载边缘计算的实时交通标识检测模型[J]. 计算机科学, 2021, 48(1): 89-95.
[3] 何彦辉, 吴桂兴, 吴志强. 基于域适应的X光图像的目标检测[J]. 计算机科学, 2021, 48(1): 175-181.
[4] 李亚男, 胡宇佳, 甘伟, 朱敏. 基于深度学习的miRNA靶位点预测研究综述[J]. 计算机科学, 2021, 48(1): 209-216.
[5] 张艳梅, 楼胤成. 基于深度神经网络的庞氏骗局合约检测方法[J]. 计算机科学, 2021, 48(1): 273-279.
[6] 庄世杰, 於志勇, 郭文忠, 黄昉菀. 基于Zoneout的跨尺度循环神经网络及其在短期电力负荷预测中的应用[J]. 计算机科学, 2020, 47(9): 105-109.
[7] 张佳嘉, 张小洪. 多分支卷积神经网络肺结节分类方法及其可解释性[J]. 计算机科学, 2020, 47(9): 129-134.
[8] 朱玲莹, 桑庆兵, 顾婷婷. 基于视差信息的无参考立体图像质量评价[J]. 计算机科学, 2020, 47(9): 150-156.
[9] 赵钦炎, 李宗民, 刘玉杰, 李华. 基于信息熵的级联Siamese网络目标跟踪[J]. 计算机科学, 2020, 47(9): 157-162.
[10] 游兰, 韩雪薇, 何正伟, 肖丝雨, 何渡, 潘筱萌. 基于改进Seq2Seq的短时AIS轨迹序列预测模型[J]. 计算机科学, 2020, 47(9): 169-174.
[11] 崔彤彤, 王桂玲, 高晶. 基于1DCNN-LSTM的船舶轨迹分类方法[J]. 计算机科学, 2020, 47(9): 175-184.
[12] 刘海潮, 王莉. 基于深度图卷积胶囊网络的图分类模型[J]. 计算机科学, 2020, 47(9): 219-225.
[13] 池昊宇, 陈长波. 基于神经网络的循环分块大小预测[J]. 计算机科学, 2020, 47(8): 62-70.
[14] 赵威, 林煜明, 王超强, 蔡国永. 基于依赖联系分析的观点词对协同抽取[J]. 计算机科学, 2020, 47(8): 164-170.
[15] 王教金, 蹇木伟, 刘翔宇, 林培光, 耿蕾蕾, 崔超然, 尹义龙. 基于3D全时序卷积神经网络的视频显著性检测[J]. 计算机科学, 2020, 47(8): 195-201.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 编辑部. 新网站开通,欢迎大家订阅![J]. 计算机科学, 2018, 1(1): 1 .
[2] 雷丽晖,王静. 可能性测度下的LTL模型检测并行化研究[J]. 计算机科学, 2018, 45(4): 71 -75 .
[3] 孙启,金燕,何琨,徐凌轩. 用于求解混合车辆路径问题的混合进化算法[J]. 计算机科学, 2018, 45(4): 76 -82 .
[4] 张佳男,肖鸣宇. 带权混合支配问题的近似算法研究[J]. 计算机科学, 2018, 45(4): 83 -88 .
[5] 伍建辉,黄中祥,李武,吴健辉,彭鑫,张生. 城市道路建设时序决策的鲁棒优化[J]. 计算机科学, 2018, 45(4): 89 -93 .
[6] 史雯隽,武继刚,罗裕春. 针对移动云计算任务迁移的快速高效调度算法[J]. 计算机科学, 2018, 45(4): 94 -99 .
[7] 周燕萍,业巧林. 基于L1-范数距离的最小二乘对支持向量机[J]. 计算机科学, 2018, 45(4): 100 -105 .
[8] 刘博艺,唐湘滟,程杰仁. 基于多生长时期模板匹配的玉米螟识别方法[J]. 计算机科学, 2018, 45(4): 106 -111 .
[9] 耿海军,施新刚,王之梁,尹霞,尹少平. 基于有向无环图的互联网域内节能路由算法[J]. 计算机科学, 2018, 45(4): 112 -116 .
[10] 崔琼,李建华,王宏,南明莉. 基于节点修复的网络化指挥信息系统弹性分析模型[J]. 计算机科学, 2018, 45(4): 117 -121 .