计算机科学 ›› 2019, Vol. 46 ›› Issue (4): 100-105.doi: 10.11896/j.issn.1002-137X.2019.04.016

• 网络与通信 • 上一篇    下一篇

RFID环境下基于自适应卡尔曼滤波的高速移动车辆速度预测

冯安琪, 钱丽萍, 黄玉蘋, 吴远   

  1. 浙江工业大学信息工程学院 杭州310023
  • 收稿日期:2018-02-06 出版日期:2019-04-15 发布日期:2019-04-23
  • 通讯作者: 钱丽萍(1981-),女,博士,教授,CCF会员,主要研究方向为无线通信、深空通信、认知无线电网络、智能电网,E-mail:lpqian@zjut.edu.cn(通信作者)
  • 作者简介:冯安琪(1995-),女,硕士生,主要研究方向为网络与智能系统,E-mail:aqfeng_zjut@163.com;黄玉蘋(1995-),男,硕士生,主要研究方向为网络与智能系统;吴 远(1981-),男,博士,教授,CCF会员,主要研究方向为无线网络、网络资源优化管理、网络安全。
  • 基金资助:
    本文受国家自然科学基金(61379122),浙江省自然科学基金(LR16F010003,LR17F010002)资助。

RFID Data-driven Vehicle Speed Prediction Using Adaptive Kalman Filter

FENG An-qi, QIAN Li-ping, HUANG Yu-pin, WU Yuan   

  1. College of Information Engineering,Zhejiang University of Technology,Hangzhou 310023,China
  • Received:2018-02-06 Online:2019-04-15 Published:2019-04-23

摘要: 针对高速移动车辆的速度预测问题,提出了一种射频识别(Radio Frequency Identification,RFID)环境下的基于自适应卡尔曼滤波的车辆速度预测方法。在RFID系统中,当车辆通过标签时,首先,阅读器需要获取该标签上最后一辆车的状态信息(即当前速度和时间戳),同时将自己的状态信息发送到该标签;然后,根据所获得的状态信息来构造状态空间模型;最后,通过带有变遗忘因子的自适应卡尔曼滤波算法来预测和调整车速。自适应卡尔曼滤波算法是利用期望输出值与实际输出值之间的误差来实现自适应遗忘因子的自适应更新,从而实现预测模型的在线更新。数值结果进一步表明,与最小二乘法和传统的卡尔曼滤波算法相比,该算法分别提高了87.5%和50%的速度预测精度,从而证明该算法可以为实际应用提供更好的实时性。

关键词: 卡尔曼滤波, 射频识别, 数据采集, 速度预测, 自适应

Abstract: This paper proposed a radio frequency identification (RFID) data-driven vehicle speed prediction method using adaptive Kalman filter.First of all,when the vehicle moves through one RFID tag,the reader needs to acquire the state information (i.e.,current speed and time stamp) of the last vehicle across this tag,meanwhile transmits its own state information to this tag.Then,the state space model can be formulated according to the acquired state information.Finally,the adaptive Kalman filtering algorithm is used to predict and adjust the vehicle speed.Adaptive Kalman filtering algorithm realizes the adaptive updating of variable forgetting factor by using the error between the expected output value and the actual output value,and thus realize the online updating of the prediction model.The numerical results further show that compared with the least square method and the conventional Kalman filtering algorithm,the proposed algorithm can improve the speed prediction accuracy by 87.5% and 50% respectively,implying that the proposed algorithm can provide better real-time effectiveness for the practical applications.

Key words: Adaptive, Data acquisition, Kalman filter, RFID, Speed prediction

中图分类号: 

  • TP391
[1]SHAN M,WORRALL S,NEBOT E.Long term vehicle motion prediction and tracking in large environments[C]∥International IEEE Conference on Intelligent Transportation Systems.IEEE,2011:1978-1983.
[2]YANG M,DONG B,WANG H,et al.Laser radar based real- time ego-motion estimation for intelligent vehicles[C]∥Intelligent Vehicle Symposium.IEEE,2002:44-51.
[3]FLOUDAS N,POLYCHRONOPOULOS A,AMDITIS A.A survey of filtering techniques for vehicle tracking by radarequipped automotive platforms[C]∥International Conference on Information Fusion.IEEE,2005:25-28.
[4]SHEN Q,BAN X J,CHANG Z,et al.On-Line Detection and Temporal Segmentation of Actions in Vidio Based Human-Computer Interaction[J].Chinese Journal of Computers,2015,38(12):2477-2487.(in Chinese) 沈晴,班晓娟,常征,等.基于视频的人机交互中动作在线发现与时域分割[J].计算机学报,2015,38(12):2477-2487.
[5]KLOOS G,GUIVANT J E,WORRALL S,et al.Wireless network for mining applications[C]∥Australasian Conference on Robotics and Automation.Canberra,Australia,2004.
[6]FENG L,LIANG G Q.Real-time Dynamic Vehicle Scheduling and Vehicle Routing Problem Based on GPS & GIS Collaboration[J].Computer Science,2017,44(9):272-285.(in Chinese) 冯亮,梁工谦.基于 GPS/GIS 协同的动态车辆调度和路径规划问题研究[J].计算机科学,2017,44(9):272-285.
[7]ZAMIRI S,REITINGER B,GRÜN H,et al.Laser ultrasonic velocity measurement for phase transformation investigation in titanium alloy[C]∥IEEE International Ultrasonics Sympo-sium.IEEE,2013:683-686.
[8]TITOV S A,MAEV R G,BOGACHENKOV A N.An ultraso- nic array technique for velocity of bulk waves and sample thickness measurement[C]∥IEEE International Ultrasonics Symposium.IEEE,2010:2384-2387.
[9]KALASHNIKOV A N,CHALLIS R E.Errors and uncertainties in the measurement of ultrasonic wave attenuation and phase velocity[J].IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control,2005,52(10):1754-1768.
[10]LI J,JIN M S,LUAN S.Intriduction Radio Frequency Identification Technology[J].Computer Knowledge and Technology,2010,6(15):4238-4240.(in Chinese) 李晶,金美善,栾爽.射频识别技术简介[J].电脑知识与技术,2010,6(15):4238-4240.
[11]HUO Y,LU Y M,CHENG W,et al.Vehicle Road Distance Measurement and Maintenance in RFID Systems on Roads[C]∥International Conference on Connected Vehicles and Expo.2014:30-36.
[12]WANG Y,DENG Q X,LIU G H,et al.Dynamic Target Trac- king and Predicting Algorithm Based on Combination of Motion Equation and Kalman Filter[J].Computer Science,2015,42(12):76-81.(in Chinese) 王妍,邓庆绪,刘赓浩,等.结合运动方程与卡尔曼滤波的动态目标追踪预测算法[J].计算机科学,2015,42(12):76-81.
[13]SUN Y S,LI Y M,WAN L,et al.An improved self-adaptive Kalman filter algorithm and its application in integrated navigation systems for AUV[J].High Technology Letters,2013,23(2):174-180.(in Chinese) 孙玉山,李岳明,万磊,等.改进的自适应Kalman滤波方法及其在AUV组合导航中的应用[J].高技术通讯,2013,23(2):174-180.
[14]YU B,ZHOU Z H,ZHAO Q T,et al.Forgetting Factor Kalman Filter and Its Application to Mobile Robots[J].Machine Building & Automation,2016(4):149-152.(in Chinese) 虞波,周翟和,赵庆涛,等.一种带遗忘因子的自适应卡尔曼滤波器及其在移动机器人中的应用[J].机械制造与自动化,2016(4):149-152.
[15]JING J B,FILEV D,KURT A,et al.Vehicle speed prediction using a cooperative method of fuzzy Markov model and auto-regressive model[C]∥IEEE Intelligent Vehicles Symposium.IEEE,2017:881-886.
[16]ZHANG R W,TIAN X M.Design of adaptive subspace predictive controller with variable forgetting facter[J].Ciesc Journal,2016,67(3):858-864.(in Chinese) 张壤文,田学民.带变遗忘因子的自适应子空间预测控制器设计[J].化工学报,2016,67(3):858-864.
[17]CHEN X F,LING Y Z,CHEN M Y.Mobile Robot Localization Algorithm Based on Gaussian Mixture Consider Kalman Filter in WSNs Environment[J].Chinese Journal of Sensors and Actua-tors,2017,30(1):133-138.(in Chinese) 陈晓飞,凌有铸,陈孟元.WSNs环境下基于高斯混合容积卡尔曼滤波的移动机器人定位算法[J].传感技术学报,2017,30(1):133-138.
[18]WELCH G,BISHOP G.An Introduction to the Kalman Filter[J].University of North Carolina at Chapel Hill,2006,8(7):127-132.
[19]YAN X Z,LUO Q H.Dynamic sensor data stream estimation method based in Kalman filtering[J].Chinese Journal of Scientific Instrument,2013,34(8):1847-1853.(in Chinese) 焉晓贞,罗清华.基于卡尔曼滤波的动态传感数据流估计方法[J].仪器仪表学报,2013,34(8):1847-1853.
[20]HEIDARI A,KHANDANI A K,MCAVOY D.Adaptive modelling and long-range prediction of mobile fading channels[J].IET Communications,2010,4(1):39-50.
[21]ZHOU M,LIU J,YANG L.Application of an Adaptive Kalman Filtering Algorithm in Dynamic Navigation Positioning[J].Process Automatic Instrument,2016,37(8):1-4.(in Chinese) 周敏,刘健,杨林.一种自适应卡尔曼滤波在动态导航定位中的应用[J].自动化仪表,2016,37(8):1-4.
[22]XIN Y,YU J.Improvement and Simulation of Adaptive Kalman Filter Algorithm[J].China Science and Technology Information,2011(22):59-60.(in Chinese) 辛英,于静.自适应卡尔曼滤波算法改进与仿真[J].中国科技信息,2011(22):59-60.
[1] 刘高聪, 罗永平, 金培权.
基于热点数据的持久性内存索引查询加速
Accelerating Persistent Memory-based Indices Based on Hotspot Data
计算机科学, 2022, 49(8): 26-32. https://doi.org/10.11896/jsjkx.210700176
[2] 陈俊, 何庆, 李守玉.
基于自适应反馈调节因子的阿基米德优化算法
Archimedes Optimization Algorithm Based on Adaptive Feedback Adjustment Factor
计算机科学, 2022, 49(8): 237-246. https://doi.org/10.11896/jsjkx.210700150
[3] 史殿习, 赵琛然, 张耀文, 杨绍武, 张拥军.
基于多智能体强化学习的端到端合作的自适应奖励方法
Adaptive Reward Method for End-to-End Cooperation Based on Multi-agent Reinforcement Learning
计算机科学, 2022, 49(8): 247-256. https://doi.org/10.11896/jsjkx.210700100
[4] 王杰, 李晓楠, 李冠宇.
基于自适应注意力机制的知识图谱补全算法
Adaptive Attention-based Knowledge Graph Completion
计算机科学, 2022, 49(7): 204-211. https://doi.org/10.11896/jsjkx.210400129
[5] 唐枫, 冯翔, 虞慧群.
基于自适应知识迁移与资源分配的多任务协同优化算法
Multi-task Cooperative Optimization Algorithm Based on Adaptive Knowledge Transfer andResource Allocation
计算机科学, 2022, 49(7): 254-262. https://doi.org/10.11896/jsjkx.210600184
[6] 谭任深, 徐龙博, 周冰, 荆朝霞, 黄向生.
海上风电场通用运维路径规划模型优化及仿真
Optimization and Simulation of General Operation and Maintenance Path Planning Model for Offshore Wind Farms
计算机科学, 2022, 49(6A): 795-801. https://doi.org/10.11896/jsjkx.210400300
[7] 周天清, 岳亚莉.
超密集物联网络中多任务多步计算卸载算法研究
Multi-Task and Multi-Step Computation Offloading in Ultra-dense IoT Networks
计算机科学, 2022, 49(6): 12-18. https://doi.org/10.11896/jsjkx.211200147
[8] 史殿习, 刘聪, 佘馥江, 张拥军.
GPS拒止环境下基于定位置信度的多无人机协同定位方法
Cooperation Localization Method Based on Location Confidence of Multi-UAV in GPS-deniedEnvironment
计算机科学, 2022, 49(4): 302-311. https://doi.org/10.11896/jsjkx.210200106
[9] 高越, 傅湘玲, 欧阳天雄, 陈松龄, 闫晨巍.
基于时空自适应图卷积神经网络的脑电信号情绪识别
EEG Emotion Recognition Based on Spatiotemporal Self-Adaptive Graph ConvolutionalNeural Network
计算机科学, 2022, 49(4): 30-36. https://doi.org/10.11896/jsjkx.210900200
[10] 赵亮, 张洁, 陈志奎.
基于双图正则化的自适应多模态鲁棒特征学习
Adaptive Multimodal Robust Feature Learning Based on Dual Graph-regularization
计算机科学, 2022, 49(4): 124-133. https://doi.org/10.11896/jsjkx.210300078
[11] 林利祥, 刘旭东, 刘少腾, 徐跃东.
前向纠错编码在网络传输协议中的应用综述
Survey on the Application of Forward Error Correction Coding in Network Transmission Protocols
计算机科学, 2022, 49(2): 292-303. https://doi.org/10.11896/jsjkx.210500104
[12] 陈乐, 高岭, 任杰, 党鑫, 王祎昊, 曹瑞, 郑杰, 王海.
基于自适应码率移动增强现实应用的能效优化研究
Adaptive Bitrate Streaming for Energy-Efficiency Mobile Augmented Reality
计算机科学, 2022, 49(1): 194-203. https://doi.org/10.11896/jsjkx.201100107
[13] 刘凯, 张宏军, 陈飞琼.
基于领域适应嵌入的军事命名实体识别
Name Entity Recognition for Military Based on Domain Adaptive Embedding
计算机科学, 2022, 49(1): 292-297. https://doi.org/10.11896/jsjkx.201100007
[14] 梁剑, 何军辉.
基于宏块编码信息自适应置换的H.264/AVC视频加密方法
H.264/AVC Video Encryption Based on Adaptive Permutation of Macroblock Coding Information
计算机科学, 2022, 49(1): 314-320. https://doi.org/10.11896/jsjkx.201100089
[15] 赵敏, 刘惊雷.
基于高斯场和自适应图正则的半监督聚类
Semi-supervised Clustering Based on Gaussian Fields and Adaptive Graph Regularization
计算机科学, 2021, 48(7): 137-144. https://doi.org/10.11896/jsjkx.200800190
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!