计算机科学 ›› 2019, Vol. 46 ›› Issue (6A): 11-15.

• 综述研究 • 上一篇    下一篇

视觉群智感知应用综述

翟书颖1, 李茹1, 李波1, 郝少阳2   

  1. 西北工业大学明德学院 西安7101241;
    西北工业大学计算机学院 西安7101292
  • 出版日期:2019-06-14 发布日期:2019-07-02
  • 通讯作者: 翟书颖(1981-),女,硕士,讲师,主要研究方向为物联网、群智感知等,E-mail:zhaisy@npumd.edu.cn
  • 作者简介:李 茹(1987-),女,硕士生,主要研究方向为自适应信号处理;李 波(1974-),男,博士,副教授,主要研究方向为无线通信和信号处理等;郝少阳(1995-),男,硕士生,主要研究方向为群智感知。
  • 基金资助:
    本文受陕西省教育厅专项科研计划项目(18JK1169),西北工业大学明德学院科研基金(2017XY02L01)资助。

Survey on Applications of Visual Crowdsensing

ZHAI Shu-ying1, LI Ru1, LI Bo1, HAO Shao-yang2   

  1. Mingde College,Northwestern Polytechnical University,Xi'an 710124,China1;
    School of Computer Science,Northwestern Polytechnical University,Xi'an 710129,China2
  • Online:2019-06-14 Published:2019-07-02

摘要: 近年来,通过图片、视频等进行感知的视觉群智感知已经成为移动群智感知的主要方式,是当前的研究热点之一。视觉群智感知要求用户以图片或者视频的形式获取真实世界中感知对象的细节信息,在各个领域都有较为广泛的应用。但是国内目前还没有文章对视觉群智感知的发展与现状进行总结。鉴于这种情况,文中综述了视觉群智感知的最新应用,包括平面图生成、室内场景重建、室外场景重建、事件重构、室内定位、室内导航、灾难救援和城市感知等;并对视觉群智感知目前面临的一些独特问题进行了总结。

关键词: 视觉群智感知, 移动群智感知, 事件重构, 室内定位, 室内导航

Abstract: In recent years,Visual Crowdsensing(VCS) that sensed through images and video,has become a predominant sensing paradigm of Mobile Crowdsensing(MCS),which is one of the current research hotspots.VCS requires people to capture the details of sensing objects in the real world in the form of pictures or video,which is widely used in various fields.However,there is no article summarizing the development and current situation of VCS in China.To this end,this paper summarized the latest applications of VCS,including floor plan generation,indoor scene reconstruction,outdoor scene reconstruction,event reconstruction,indoor localization,indoor navigation and disaster relief,and summarized some unique problems of VCS at present.

Key words: Visual crowdsensing, Mobile crowdsensing, Event reconstruction, Indoor localization, Indoor navigation

中图分类号: 

  • TP391
[1] GUO B,WANG Z,YU Z,et al.Mobile Crowd Sensing and Computing:The Review of an Emerging Human-Powered Sensing Paradigm[J].Acm Computing Surveys,2015,48(1):7.
[2] WANG L,ZHANG D,WANG Y,et al.Sparse mobile crow-dsensing:challenges and opportunities[J].IEEE Communications Magazine,2016,54(7):161-167.
[3] GUO B,HAN Q,CHEN H,et al.The Emergence of Visual Crowdsensing:Challenges and Opportunities[J].IEEE Communications Surveys & Tutorials,2017,PP(99):1.
[4] TENG X,GUO D,GUO Y,et al.SISE:Self-updating of Indoor Semantic Floorplans for General Entities[J].IEEE Transactions on Mobile Computing,2018,PP(99):1.
[5] ZHANG Q,ZHANG Q,SHI W,et al.Firework:Data Proces-sing and Sharing for Hybrid Cloud-Edge Analytics[J].IEEE Transactions on Parallel & Distributed Systems,2018,PP(99):1.
[6] TENG X,GUO D,GUO Y,et al.IONavi:an indoor-outdoor navigation service via mobile crowdsensing[J].ACM Transactions on Sensor Networks,2017,13(2):12.
[7] ZUO P,HUA Y,LIU X,et al.BEES:Bandwidth- and Energy- Efficient Image Sharing for Real-Time Situation Awareness[C]∥IEEE,International Conference on Distributed Computing Systems.IEEE,2017:1510-1520.
[8] CHEN S,LI M,REN K,et al.Crowd Map:Accurate Recon-struction of Indoor Floor Plans from Crowdsourced Sensor-Rich Videos∥2015 IEEE 35th International Conference on Distributed Computing Systems.IEEE,2015:1-10.
[9] GAO R,ZHAO M,YE T,et al.Jigsaw:indoor floor plan reconstruction via mobile crowdsensing[C]∥International Confe-rence on Mobile Computing and NETWORKING.ACM,2014:249-260.
[10] SANKAR A,SEITZ S.Capturing indoor scenes with smartphones[C]∥ACM Symposium on User Interface Software and Technology.ACM,2012:403-412.
[11] PENG Z,GAO S,XIAO B,et al.CrowdGIS:Updating Digital Maps via Mobile Crowdsensing[J].IEEE Transactions on Automation Science & Engineering,2017,PP(99):1-12.
[12] TUITE K,SNAVELY N,HSIAO D Y,et al.PhotoCity:train-ing experts at large-scale image acquisition through a competitive game∥Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.ACM,2011:1383-1392.
[13] RAYCHOUDHURY V,SHRIVASTAV S,SANDHA S S,et al. CROWD-PAN-360:Crowdsourcing Based Context-Aware Panoramic Map Generation for Smartphone Users[J].IEEE Transactions on Parallel & Distributed Systems,2015,26(8):2208-2219.
[14] KIM S H,LU Y,SHI J,et al.Key Frame Selection Algorithms for Automatic Generation of Panoramic Images from Crow-dsourced Geo-tagged Videos[C]∥International Symposium on Web and Wireless Geographical Information Systems.Springer,Berlin,Heidelberg,2014:67-84.
[15] BAO X,CHOUDHURY R R.MoVi:mobile phone based video highlights via collaborative sensing[C]∥International Confe-rence on Mobile Systems,Applications,and Services.ACM,2010:357-370.
[16] GIRIDHAR P,WANG S,ABDELZAHER T,et al.On localizing urban events with instagram[C]∥INFOCOM 2017-IEEE Conference on Computer Communications.IEEE,2017:1-9.
[17] BANO S,CAVALLARO A.Discovery and organization of multi-camera user-generated videos of the same event[J].Information Sciences,2015,302:108-121.
[18] CARLIER A,CALVET L,GURDJOS P,et al.Querying Multiple Simultaneous Video Streams with 3D Interest Maps[M]∥Visual Content Indexing and Retrieval with Psycho-Visual Mo-dels.Springer,Cham,2017:125-144.
[19] RODRIGUES J,MARQUES E R B,SILVA J,et al.Video Dissemination in Untethered Edge-Clouds:A Case Study[C]∥IFIP International Conference on Distributed Applications and Interoperable Systems.Springer,Cham,2018:137-152.
[20] BOHEZ S,DANEELS G,VAN HERZEELE L,et al.The crowd as a cameraman:on-stage display of crowdsourced mobile video at large-scale events[J].Multimedia Tools and Applications,2018,77(1):597-629.
[21] XU H,YANG Z,ZHOU Z,et al.Enhancing wifi-based localization with visual clues[C]∥Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing.ACM,2015:963-974.
[22] CHON Y,LANE N D,LI F,et al.Automatically characterizing places with opportunistic crowdsensing using smartphones[C]∥Proceedings of the 2012 ACM Conference on Ubiquitous Computing.ACM,2012:481-490.
[23] DONG J,XIAO Y,NOREIKIS M,et al.iMoon:Using Smart-phones for Image-based Indoor Navigation[C]∥ACM Con-ference on Embedded Networked Sensor Systems.ACM,2015:85-97.
[24] https://mspg.azurewebsites.net.
[25] ROY Q,PERRAULT S T,DAVIS R C,et al.Follow-My-Lead:Intuitive Indoor Path Creation and Navigation Using Interactive Videos[C]∥CHI Conference on Human Factors in Computing Systems.ACM,2017:5703-5715.
[26] YIN Z,WU C,YANG Z,et al.Peer-to-peer indoor navigation using smartphones[J].IEEE Journal on Selected Areas in Communications,2017,35(5):1141-1153.
[27] SHU Y,SHIN K G,HE T,et al.Last-mile navigation using sma-rtphones[C]∥Proceedings of the 21st Annual International Conference on Mobile Computing and Networking.ACM,2015:512-524.
[28] RICHERZHAGEN B,WULFHEIDE J,KOEPPL H,et al.Enabling crowdsourced live event coverage with adaptive collaborative upload strategies[C]∥World of Wireless,Mobile and Multimedia Networks.IEEE,2016:1-3.
[29] WU Y,CAO G.VideoMec:a metadata-enhanced crowdsourcing system for mobile videos[C]∥ACM/IEEE International Conference on Information Processing in Sensor Networks.IEEE,2017:143-154.
[30] DAO T,ROYCHOWDHURY A K,MADHYASTHA H V,et al. Managing Redundant Content in Bandwidth Constrained Wireless Networks[J].IEEE/ACM Transactions on Networking,2017,PP(99):1-16.
[31] WU Y,WANG Y,HU W,et al.Resource-Aware Photo Crow-dsourcing Through Disruption Tolerant Networks[C]∥IEEE,International Conference on Distributed Computing Systems.IEEE,2016:374-383.
[32] WU Y,WANG Y,HU W,et al.Smartphoto:a resource-aware crowdsourcing approach for image sensing with smartphones[J].IEEE Transactions on Mobile Computing,2016,15(5):1249-1263.
[33] WEINSBERG U,LI Q,TAFT N,et al.CARE:content aware redundancy elimination for challenged networks[C]∥Procee-dings of the 11th ACM Workshop on Hot Topics in Networks.ACM,2012:127-132.
[34] MERGEL I.Distributed Democracy:SeeClickFix.Com for Crowdsourced Issue Reporting[J].Ssrn Electronic Journal,2012.
[35] LU Y,COLMENARES J A.Efficient Detection of Points of Interest from Georeferenced Visual Content∥Proceedings of the 6th ACM SIGSPATIAL Workshop on Analytics for Big Geospatial Data.ACM,2017:27-36.
[36] LI Y,XUE F,FAN X,et al.Pedestrian walking safety system based on smartphone built-in sensors[J].IET Communications,2018,12(6):751-758.
[37] KIM S,ROBSON C,ZIMMERMAN T,et al.Creek watch:pairing usefulness and usability for successful citizen science∥Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.ACM,2011:2125-2134.
[1] 徐鹤, 吴满星, 李鹏. 基于ARIMA模型的RFID室内相对位置定位算法[J]. 计算机科学, 2020, 47(9): 252-257.
[2] 李建军, 汪校铃, 杨玉, 付佳. 基于CQPSO移动群智感知紧急任务分配方法研究[J]. 计算机科学, 2020, 47(6A): 273-277.
[3] 李丽,郑嘉利,王哲,袁源,石静. 基于异步优势动作评价的RFID室内定位算法[J]. 计算机科学, 2020, 47(2): 233-238.
[4] 王文博, 黄璞, 杨章静. 基于超宽带、里程计、RGB-D融合的室内定位方法[J]. 计算机科学, 2020, 47(11A): 334-338.
[5] 蔡威, 白光伟, 沈航, 成昭炜, 张慧丽. 移动群智感知中基于强化学习的双赢博弈[J]. 计算机科学, 2020, 47(10): 41-47.
[6] 李卓, 徐哲, 陈昕, 李淑琴. 面向移动群智感知的位置相关在线多任务分配算法[J]. 计算机科学, 2019, 46(6): 102-106.
[7] 王哲, 郑嘉利, 李丽, 袁源, 石静. 蝗虫群优化和极限学习机相结合的RFID室内定位算法[J]. 计算机科学, 2019, 46(12): 120-125.
[8] 夏俊, 刘军发, 蒋鑫龙, 陈益强. 针对设备差异性问题的增量式室内定位方法[J]. 计算机科学, 2018, 45(10): 69-77.
[9] 付先凯, 蒋鑫龙, 刘军发, 张少博, 陈益强. 基于多维尺度分析的自适应室内群终端定位方法[J]. 计算机科学, 2018, 45(10): 104-110.
[10] 陈诗军, 王慧强, 王园园, 胡海婧. 一种面向室内定位的基站选择优化方法[J]. 计算机科学, 2018, 45(10): 115-119.
[11] 宦若虹,陈月. 基于地图信息和位置自适应修正的粒子滤波室内定位方法[J]. 计算机科学, 2017, 44(Z11): 297-301.
[12] 周阿鹏,覃锡忠,贾振红,NIKOLA Kasabov. 基于众包的嵌套流形匹配室内定位方法[J]. 计算机科学, 2017, 44(8): 64-70.
[13] 何欣,刘天须,丁爽,白琳. 混合群智感知中服务节点优化选择机制[J]. 计算机科学, 2017, 44(1): 113-116.
[14] 黄旭,范婧,吴茂念,顾永跟. 基于Wi-Fi指纹定位技术的智能停车场系统的设计与实现[J]. 计算机科学, 2016, 43(Z6): 512-515.
[15] 沙朝恒,肖甫,陈蕾,孙力娟,王汝传. 一种基于矩阵补全的室内指纹定位算法[J]. 计算机科学, 2016, 43(6): 91-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 雷丽晖,王静. 可能性测度下的LTL模型检测并行化研究[J]. 计算机科学, 2018, 45(4): 71 -75 .
[2] 孙启,金燕,何琨,徐凌轩. 用于求解混合车辆路径问题的混合进化算法[J]. 计算机科学, 2018, 45(4): 76 -82 .
[3] 张佳男,肖鸣宇. 带权混合支配问题的近似算法研究[J]. 计算机科学, 2018, 45(4): 83 -88 .
[4] 伍建辉,黄中祥,李武,吴健辉,彭鑫,张生. 城市道路建设时序决策的鲁棒优化[J]. 计算机科学, 2018, 45(4): 89 -93 .
[5] 史雯隽,武继刚,罗裕春. 针对移动云计算任务迁移的快速高效调度算法[J]. 计算机科学, 2018, 45(4): 94 -99 .
[6] 周燕萍,业巧林. 基于L1-范数距离的最小二乘对支持向量机[J]. 计算机科学, 2018, 45(4): 100 -105 .
[7] 刘博艺,唐湘滟,程杰仁. 基于多生长时期模板匹配的玉米螟识别方法[J]. 计算机科学, 2018, 45(4): 106 -111 .
[8] 耿海军,施新刚,王之梁,尹霞,尹少平. 基于有向无环图的互联网域内节能路由算法[J]. 计算机科学, 2018, 45(4): 112 -116 .
[9] 崔琼,李建华,王宏,南明莉. 基于节点修复的网络化指挥信息系统弹性分析模型[J]. 计算机科学, 2018, 45(4): 117 -121 .
[10] 施超,谢在鹏,柳晗,吕鑫. 基于稳定匹配的容器部署策略的优化[J]. 计算机科学, 2018, 45(4): 131 -136 .