计算机科学 ›› 2019, Vol. 46 ›› Issue (6A): 375-379.

• 信息安全 • 上一篇    下一篇

考虑网络拓扑结构变化的SIRS模型的建立与稳定性分析

刘晓东, 魏海平, 曹宇   

  1. 辽宁石油化工大学计算机与通信工程学院 辽宁 抚顺113000
  • 出版日期:2019-06-14 发布日期:2019-07-02
  • 通讯作者: 曹 宇(1984-),男,博士,主要研究方向为复杂网络,E-mail:yucao_lnshu@163.com(通信作者)。
  • 作者简介:刘晓东(1991-),男,硕士,主要研究方向为复杂网络、网络安全;魏海平(1964-),男,硕士,教授,CCF高级会员,主要研究方向为网络安全、信息安全;
  • 基金资助:
    本文受辽宁省教育科学“十三五”规划立项课题(JG18DA031),辽宁省教育科学“十三五”规划项目(JG18DB306)资助。

Modeling and Stability Analysis for SIRS Model with Network Topology Changes

LIU Xiao-dong, WEI Hai-ping, CAO Yu   

  1. College of Computer and Communication Engineering,Liaoning Shihua University,Fushun,Liaoning 113000,China
  • Online:2019-06-14 Published:2019-07-02

摘要: 针对经典SIRS(易感-感染-免疫-易感)模型中没有考虑到网络拓扑结构发生变化的情况,提出了一种网络拓扑结构发生变化的SIRS改进模型,其利用李雅普诺夫稳定性分析方法分析得到传播阈值以及拓扑结构变化与传播过程的相关性。在传播过程中当系统满足阈值条件时,计算机病毒最终消失,从而证明了系统不满足阈值条件时地方病平衡点的存在性与唯一性,并得出了满足地方病平衡点稳定的限制条件。对比仿真实验的结果验证了上述理论结果,并表明带有网络拓扑结构发生变化的SIRS模型比已有的SIRS模型更加逼近现实生活中计算机病毒的传播过程。

关键词: SIRS模型, 复杂网络, 网络拓扑结构变化, 阈值条件

Abstract: This paper proposed an improved model to tackle the problem that the network topology changes is not considered in the classic SIRS (Susceptible-infected-recovered-susceptible) model.The threshold and the correlation between the topology and transmission process are deduced by Lyapunov stability theory.In the spread process of virus,computer virus will disappear ultimately when the system meets the threshold condition,which proves that there exists an equilibrium point of local virus when the system does not meet the threshold condition,and from which the limiting conditions for stability of the equilibrium point is also reached.Simulated experiment results indicate that the theoretical conclusions are valid and the SIRS model with network topology changes can simulate the spread process of actual computer virus better than the existing SIRS model.

Key words: Complex networks, Network topology changes, SIRS model, Threshold condition

中图分类号: 

  • TP393
[1]KEPHART J O,WHITE S R.Directed-graph epidemiological models of computer viruses[C]∥Proceedings of the 1991 IEEE Symposium on Security and Privacy.Oakland,California,USA:IEEE Computer Society Press,1991:343- 359.
[2]PASTOR-SATORRAS R,VESPINGNANI A.Epidemic spreading in scale-free networks[J].Physical Review Letters,2001,86(14):3200-3203.
[3]PASTOR-SATORRAS R,VAZQUEZ A,VESPIGNANI A.Dynamical and correlation properties of the Internet[J].Physical Review Letters,2001,87(25):258701.
[4]MORENO Y,PASTOR-SATORRAS R,VESPIGNANI A. Epidemic outbreaks in complex heterogeneous networks[J].Eur.Phys.J.B,2002,26(4):521- 529.
[5]PASTOR-SATORRAS R,VESPIGNANI A.Epidemics and immunization in scale-free networks[OL].https://arXiv.org/abs/cond-mat/0205260.
[6]KEPHART J O,WHITE S R,CHESS D M.computers and epidemiology[J].IEEE Spectrum,1993,30(5):20-26.
[7]KEPHART J O,WHITE S R.Directed-graph epidemiological models of computer viruses[C]∥Proceedings of the 1991 IEEE Computer society Symposium on Research in security and Privacy.Oakland,CA.Piscataway:IEEE Press 1991:343-359.
[8]KIM J,RADHAKRISHNAN S,DHALL S K.Measurement and analysis of worm propagation on internet network topology [C]∥Proceedings of the 13th International Conference on Computer Communications and Networks(ICCN 2004).Chicago,IL,Piscataway:IEEE Press,2004:495-500.
[9]HAN X,TAN Q L.Dynamical behavior of computer virus on internet[J].Applied Mathematics and Computation,2010,217(6):2520-2526.
[10]MISHRA B K,JHA N.Fixed Period of temporaryImmunity after run of antimalicious software on computer nodes[J].Applied Mathematics and Computation,2007,190(2):1207-1212.
[11]MISHRA B K,PANDEY S K.Fuzzy epidemic model for the transmission of worms in computer network[J].Nonlinear Analysis:Real World Applications:Real World Applications,2010,11(5):4335-4341.
[12]马知恩,周义仓.传染病动力学的数学建模与研究[M].北京:科技出版社,2004.
[13]汪小帆,李翔,陈关荣.复杂网络理论及其应用[M].北京:清华大学出版社,2006:72-85.
[14]李从清.系统稳定性的劳斯判据与赫尔维茨判据的等价性论证[J].天津城市建设学院学报,2009,15(3):207-210.
[15]何艳辉,唐三一.经典SIR模型辨识和参数估计问题[J].应用数学和力学,2013,34(3):252-258.
[16]曹宇.传染病动力学模型研究[D].沈阳:东北大学,2014.
[17]叶晓梦,杨小帆.基于两阶段免疫接种的SIRS计算机病毒传播模型[J].计算机应用,2013,33(3):739-742.
[18]彭梅,李传东,何兴.基于直接免疫的SEIR计算机病毒传播模型[J].重庆师范大学学报(自然科学版),2013,30(1):77-80.
[19]冯丽萍,王鸿斌,冯素琴.改进的SIR计算机病毒传播模型[J].计算机应用,2011,31(7):1891-1893.
[20]张安勇,邵世芬,苏丽君.基于Netlogo的计算机网络病毒传播模型SIRH及仿真[J].青岛大学学报(自然科学版),2014,27(2):39-44.
[21]徐兰芳,习爱民,范小峰.计算机网络病毒传播模型SIRH[J].计算机工程与科学,2009,31(1):4-6,30.
[22]刘丹,殷亚文,宋明.基于SIR模型的微博信息扩散规律仿真分析[J].北京邮电大学学报(社会科学版),2014,16(3):28-33.
[23]曹宇,井元伟,袁峰,等.复杂网络上带有非线性感染率的SIRS模型分析[J].东北大学学报(自然科学版),2012,33(1):17-20.
[1] 郑文萍, 刘美麟, 杨贵.
一种基于节点稳定性和邻域相似性的社区发现算法
Community Detection Algorithm Based on Node Stability and Neighbor Similarity
计算机科学, 2022, 49(9): 83-91. https://doi.org/10.11896/jsjkx.220400146
[2] 杨波, 李远彪.
数据科学与大数据技术课程体系的复杂网络分析
Complex Network Analysis on Curriculum System of Data Science and Big Data Technology
计算机科学, 2022, 49(6A): 680-685. https://doi.org/10.11896/jsjkx.210800123
[3] 何茜, 贺可太, 王金山, 林绅文, 杨菁林, 冯玉超.
比特币实体交易模式分析
Analysis of Bitcoin Entity Transaction Patterns
计算机科学, 2022, 49(6A): 502-507. https://doi.org/10.11896/jsjkx.210600178
[4] 王本钰, 顾益军, 彭舒凡, 郑棣文.
融合动态距离和随机竞争学习的社区发现算法
Community Detection Algorithm Based on Dynamic Distance and Stochastic Competitive Learning
计算机科学, 2022, 49(5): 170-178. https://doi.org/10.11896/jsjkx.210300206
[5] 陈世聪, 袁得嵛, 黄淑华, 杨明.
基于结构深度网络嵌入模型的节点标签分类算法
Node Label Classification Algorithm Based on Structural Depth Network Embedding Model
计算机科学, 2022, 49(3): 105-112. https://doi.org/10.11896/jsjkx.201000177
[6] 赵学磊, 季新生, 刘树新, 李英乐, 李海涛.
基于路径连接强度的有向网络链路预测方法
Link Prediction Method for Directed Networks Based on Path Connection Strength
计算机科学, 2022, 49(2): 216-222. https://doi.org/10.11896/jsjkx.210100107
[7] 李家文, 郭炳晖, 杨小博, 郑志明.
基于信息传播的致病基因识别研究
Disease Genes Recognition Based on Information Propagation
计算机科学, 2022, 49(1): 264-270. https://doi.org/10.11896/jsjkx.201100129
[8] 穆俊芳, 郑文萍, 王杰, 梁吉业.
基于重连机制的复杂网络鲁棒性分析
Robustness Analysis of Complex Network Based on Rewiring Mechanism
计算机科学, 2021, 48(7): 130-136. https://doi.org/10.11896/jsjkx.201000108
[9] 胡军, 王雨桐, 何欣蔚, 武晖栋, 李慧嘉.
基于复杂网络的全球航空网络结构分析与应用
Analysis and Application of Global Aviation Network Structure Based on Complex Network
计算机科学, 2021, 48(6A): 321-325. https://doi.org/10.11896/jsjkx.200900112
[10] 王学光, 张爱新, 窦炳琳.
复杂网络上的非线性负载容量模型
Non-linear Load Capacity Model of Complex Networks
计算机科学, 2021, 48(6): 282-287. https://doi.org/10.11896/jsjkx.200700040
[11] 马媛媛, 韩华, 瞿倩倩.
基于节点亲密度的重要性评估算法
Importance Evaluation Algorithm Based on Node Intimate Degree
计算机科学, 2021, 48(5): 140-146. https://doi.org/10.11896/jsjkx.200300184
[12] 殷子樵, 郭炳晖, 马双鸽, 米志龙, 孙怡帆, 郑志明.
群智体系网络结构的自治调节:从生物调控网络结构谈起
Autonomous Structural Adjustment of Crowd Intelligence Network: Begin from Structure of Biological Regulatory Network
计算机科学, 2021, 48(5): 184-189. https://doi.org/10.11896/jsjkx.210200161
[13] 刘胜久, 李天瑞, 谢鹏, 刘佳.
带权图的多重分形度量
Measure for Multi-fractals of Weighted Graphs
计算机科学, 2021, 48(3): 136-143. https://doi.org/10.11896/jsjkx.200700159
[14] 龚追飞, 魏传佳.
基于改进AdaBoost算法的复杂网络链路预测
Link Prediction of Complex Network Based on Improved AdaBoost Algorithm
计算机科学, 2021, 48(3): 158-162. https://doi.org/10.11896/jsjkx.200600075
[15] 龚追飞, 魏传佳.
基于拓扑相似和XGBoost的复杂网络链路预测方法
Complex Network Link Prediction Method Based on Topology Similarity and XGBoost
计算机科学, 2021, 48(12): 226-230. https://doi.org/10.11896/jsjkx.200800026
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!