计算机科学 ›› 2020, Vol. 47 ›› Issue (9): 105-109.doi: 10.11896/jsjkx.190800030

• 数据库&大数据&数据科学 • 上一篇    下一篇

基于Zoneout的跨尺度循环神经网络及其在短期电力负荷预测中的应用

庄世杰, 於志勇, 郭文忠, 黄昉菀   

  1. 福州大学数学与计算机科学学院 福州350116
    福州大学福建省网络计算与智能信息处理重点实验室 福州350116
  • 收稿日期:2019-08-07 发布日期:2020-09-10
  • 通讯作者: 黄昉菀(hfw@fzu.edu.cn)
  • 作者简介:2942265521@qq.com
  • 基金资助:
    国家自然科学基金(61772136,61672159);福建省中青年教师教育科研项目(JT180045)

Short Term Load Forecasting via Zoneout-based Multi-time Scale Recurrent Neural Network

ZHUANG Shi-jie, YU Zhi-yong, GUO Wen-zhong, HUANG Fang-wan   

  1. College of Mathematics and Computer Science,Fuzhou University,Fuzhou 350116,China
    Fujian Provincial Key Laboratory of Network Computing and Intelligent Information Processing,Fuzhou University,Fuzhou 350116,China
  • Received:2019-08-07 Published:2020-09-10
  • About author:ZHUANG Shi-jie,born in 1995,undergraduate.His main research interests include computational intelligence,machine learning and deep learning.
    HUANG Fang-wan,born in 1980,senior lecturer,is a member of China Computer Federation.Her main research interests include computational intelligence,machine learning and big data analysis.
  • Supported by:
    National Natural Science Foundation of China (61772136,61672159) and Research Project for Young and Middle-aged Teachers of Fujian Province (JT180045).

摘要: 通过精确的电力负荷预测,智能电网可以提供比传统电网更高效、可靠和环保的电力服务。现实生活中,电力负荷数据往往存在着与历史数据较高的时间相关性,而传统的神经网络却很少关注它。近年来,循环神经网络(Recurrent Neural Network,RNN)由于可以很好地捕获在时间上距离很远的数据之间的相关性,因此在电力负荷预测中受到越来越多的关注。但是,由于RNN特有的自循环结构,当采用随时间的反向传播算法(Back-Propagation Through Time,BPTT)进行网络训练时,随着网络层数的增加,很容易发生梯度消失等问题,从而导致预测精度下降。目前已有多种解决梯度消失问题的RNN架构,如长短期记忆网络(Long Short-Term Memory,LSTM)和门控制单元(Gated Recurrent Unit,GRU),但其复杂的内部结构会增加训练时长。为了解决上述问题,文中首先对目前流行的各种RNN架构进行了研究和分析,其次结合最新提出的Zoneout技术,设计了一种跨时间尺度的分模块循环神经网络架构,重点研究了隐藏层模块的随机更新策略,不仅有效解决了梯度消失问题,而且大幅度减少了待训练的网络参数。基于基准数据集和实际负载数据集的实验结果表明,该结构可以获得比目前流行的RNN架构更好的性能。

关键词: Zoneout, 短期电力负荷预测, 跨时间尺度, 循环神经网络

Abstract: Because accurate power load forecasting,smart grids can provide more efficient,reliable and environmentally friendly power services than traditional grids.In real life,power load data often has a high temporal correlation with historical data,while traditional neural networks pay little attention to it.In recent years,the recurrent neural network (RNN) has received more and more attention in power load forecasting,because it can well capture the correlation between data with large cross-time scale.However,due to the unique self-connections structure of RNN,when the back-propagation through time(BPTT) is adopted for network training,the problems such as vanishing gradient are prone to occur with the number of network layers increases,resulting in a decrease in prediction accuracy.There are varieties of RNN architectures that can solve the vanishing gradient problem,such as long short-term memory (LSTM) and gated recurrent unit (GRU),but their complex internal structure will increase the training time.In order to solve the above problems,this paper first analyzes and studies RNN and itsvariants,and then combines the Zoneout function to design a multi-time scale modularized RNN architecture,focuses on the update strategy of hidden layer modules.It not only effectively solves the vanishing gradient problem,but also greatly reduces the number of network parameters that need to be trained.Experimental results based on the benchmark dataset and the real-worldload dataset show that this architecture can achieve better performance than the current popular RNN architecture.

Key words: Multi-time scale, Recurrent neural networks, Short term load forecast, Zoneout

中图分类号: 

  • TP183
[1] DU D,CHEN R,LI X,et al.Malicious data deception attacksagainst power systems:A new case and its detection method[J].Transactions of the Institute of Measurement and Control,2019,41(6):1590-1599.
[2] NATARAJA C,GORAWAR M B,SHILPA G N,et al.Shortterm load forecasting using time series analysis:a case study for Karnataka,India[J].Int.J.Eng.Sci.Innov.Technol,2012,1(2):45-53.
[3] HERNÁNDEZ L,BALADRÓN C,AGUIAR J,et al.Artificial neural network for short-term load forecasting in distribution systems[J].Energies,2014,7(3):1576-1598.
[4] SONG K B,BAEK Y S,HONG D H,et al.Short-term load forecasting for the holidays using fuzzy linear regression method[J].IEEE Transactions on Power Systems,2005,20(1):96-101.
[5] WANG Z,YANG F,HO D W C,et al.Stochastic dynamic mo-deling of short gene expression time-series data[J].IEEE Tran-sactions on Manobioscience,2008,7(1):44-55.
[6] WEI G,WANG Z,SHU H,et al.Robust filtering for gene expression time series data with variance constraints[J].International Journal of Computer Mathematics,2007,84(5):619-633.
[7] AL-HAMADI H M,SOLIMAN S A.Short-term electric load forecasting based on Kalman filtering algorithm with moving window weather and load model[J].Electric Power Systems Research,2004,68(1):47-59.
[8] RAHMAN S,BHATNAGAR R.An expert system based algorithm for short term load forecast[J].IEEE Transactions on Power Systems,1988,3(2):392-399.
[9] WEI G,FENG G,WANG Z.Robust Control for Discrete-Time Fuzzy Systems With Infinite-Distributed Delays[J].IEEE Transactions on Fuzzy Systems,2008,17(1):224-232.
[10] LEE C M,KO C N.Short-term load forecasting using liftingscheme and ARIMA models[J].Expert Systems with Applications,2011,38(5):5902-5911.
[11] LIU Y,WANG Z,LIU X.Asymptotic stability for neural networks with mixed time-delays:The discrete-time case[J].Neural Networks,2009,22(1):67-74.
[12] LIU L,SHEN B,WANG X.Research on kernel function of support vector machine[M]//Advanced Technologies,Embedded and Multimedia for Human-centric Computing.Springer,Dordrecht,2014:827-834.
[13] BAI Y.Design of Cluster Analysis Model Based on Load CharacteristicCurve of Power Consumers [J].Journal of Chongqing University of Technology(Natural Science),2018, 32(12):181-185.
[14] HIPPERT H S,PEDREIRA C E,SOUZA R C.Neural networks for short-term load forecasting:A review and evaluation[J].IEEE Transactions on Power Systems,2001,16(1):44-55.
[15] LÄNGKVIST M,KARLSSON L,LOUTFI A.A review of unsupervised feature learning and deep learning for time-series modeling[J].Pattern Recognition Letters,2014,42:11-24.
[16] BENGIO Y,SIMARD P,FRASCONI P.Learning long-term dependencies with gradient descent is difficult[J].IEEE Transactions on Neural Networks,1994,5(2):157-166.
[17] HOCHREITER S,SCHMIDHUBER J.Long short-term memory[J].Neural Computation,1997,9(8):1735-1780.
[18] CHUNG J,GULCEHRE C,CHO K H,et al.Empirical evaluation of gated recurrent neural networks on sequence modeling[J].arXiv:1412.3555,2014.
[19] KOUTNIK J,GREFF K,GOMEZ F,et al.A clockwork rnn[J].arXiv:1402.3511,2014.
[20] CHANG S,ZHANG Y,HAN W,et al.Dilated recurrent neural networks[C]//Advances in Neural Information Processing Systems.2017:77-87.
[21] LI S,LI W,COOK C,et al.Independently recurrent neural network (indrnn):Building a longer and deeper rnn[C]//Procee-dings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:5457-5466.
[22] KRUEGER D,MAHARAJ T,KRAMÁR J,et al.Zoneout:Re-gularizing rnns by randomly preserving hidden activations[J].arXiv:1606.01305,2016.
[1] 彭双, 伍江江, 陈浩, 杜春, 李军.
基于注意力神经网络的对地观测卫星星上自主任务规划方法
Satellite Onboard Observation Task Planning Based on Attention Neural Network
计算机科学, 2022, 49(7): 242-247. https://doi.org/10.11896/jsjkx.210500093
[2] 喻昕, 林植良.
解决一类非光滑伪凸优化问题的新型神经网络
Novel Neural Network for Dealing with a Kind of Non-smooth Pseudoconvex Optimization Problems
计算机科学, 2022, 49(5): 227-234. https://doi.org/10.11896/jsjkx.210400179
[3] 安鑫, 代子彪, 李阳, 孙晓, 任福继.
基于BERT的端到端语音合成方法
End-to-End Speech Synthesis Based on BERT
计算机科学, 2022, 49(4): 221-226. https://doi.org/10.11896/jsjkx.210300071
[4] 时雨涛, 孙晓.
一种会话理解模型的问题生成方法
Conversational Comprehension Model for Question Generation
计算机科学, 2022, 49(3): 232-238. https://doi.org/10.11896/jsjkx.210200153
[5] 李昊, 曹书瑜, 陈亚青, 张敏.
基于注意力机制的用户轨迹识别模型
User Trajectory Identification Model via Attention Mechanism
计算机科学, 2022, 49(3): 308-312. https://doi.org/10.11896/jsjkx.210300231
[6] 肖丁, 张玙璠, 纪厚业.
基于多头注意力机制的用户窃电行为检测
Electricity Theft Detection Based on Multi-head Attention Mechanism
计算机科学, 2022, 49(1): 140-145. https://doi.org/10.11896/jsjkx.210100177
[7] 曾友渝, 谢强.
基于改进RNN和VAR的船舶设备故障预测方法
Fault Prediction Method Based on Improved RNN and VAR for Ship Equipment
计算机科学, 2021, 48(6): 184-189. https://doi.org/10.11896/jsjkx.200700117
[8] 尹久, 池凯凯, 宦若虹.
基于ATT-DGRU的文本方面级别情感分析
Aspect-level Sentiment Analysis of Text Based on ATT-DGRU
计算机科学, 2021, 48(5): 217-224. https://doi.org/10.11896/jsjkx.200500076
[9] 王习, 张凯, 李军辉, 孔芳, 张熠天.
联合自注意力和循环网络的图像标题生成
Generation of Image Caption of Joint Self-attention and Recurrent Neural Network
计算机科学, 2021, 48(4): 157-163. https://doi.org/10.11896/jsjkx.200300146
[10] 陈千, 车苗苗, 郭鑫, 王素格.
一种循环卷积注意力模型的文本情感分类方法
Recurrent Convolution Attention Model for Sentiment Classification
计算机科学, 2021, 48(2): 245-249. https://doi.org/10.11896/jsjkx.200100078
[11] 吕明琪, 洪照雄, 陈铁明.
一种融合时空关联与社会事件的交通流预测方法
Traffic Flow Forecasting Method Combining Spatio-Temporal Correlations and Social Events
计算机科学, 2021, 48(2): 264-270. https://doi.org/10.11896/jsjkx.200300098
[12] 李亚男, 胡宇佳, 甘伟, 朱敏.
基于深度学习的miRNA靶位点预测研究综述
Survey on Target Site Prediction of Human miRNA Based on Deep Learning
计算机科学, 2021, 48(1): 209-216. https://doi.org/10.11896/jsjkx.191200111
[13] 游兰, 韩雪薇, 何正伟, 肖丝雨, 何渡, 潘筱萌.
基于改进Seq2Seq的短时AIS轨迹序列预测模型
Improved Sequence-to-Sequence Model for Short-term Vessel Trajectory Prediction Using AIS Data Streams
计算机科学, 2020, 47(9): 169-174. https://doi.org/10.11896/jsjkx.190800060
[14] 赫磊, 邵展鹏, 张剑华, 周小龙.
基于深度学习的行为识别算法综述
Review of Deep Learning-based Action Recognition Algorithms
计算机科学, 2020, 47(6A): 139-147. https://doi.org/10.11896/JsJkx.190900176
[15] 张志扬, 张凤荔, 陈学勤, 王瑞锦.
基于分层注意力的信息级联预测模型
Information Cascade Prediction Model Based on Hierarchical Attention
计算机科学, 2020, 47(6): 201-209. https://doi.org/10.11896/jsjkx.200200117
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!