计算机科学 ›› 2021, Vol. 48 ›› Issue (5): 190-196.doi: 10.11896/jsjkx.200500023

• 人工智能 • 上一篇    下一篇

基于表示学习的工业领域人机物本体融合

杨如涵, 戴毅茹, 王坚, 董津   

  1. 同济大学电子与信息工程学院 上海201804
  • 收稿日期:2020-05-07 修回日期:2020-08-15 出版日期:2021-05-15 发布日期:2021-05-09
  • 通讯作者: 戴毅茹(zlydyr@mail.tongji.edu.cn)
  • 基金资助:
    国家科技重大专项(2018AAA0101800)

Humans-Cyber-Physical Ontology Fusion of Industry Based on Representation Learning

YANG Ru-han, DAI Yi-ru, WANG Jian, DONG Jin   

  1. College of Electronics and Information Engineering,Tongji University,Shanghai 201804,China
  • Received:2020-05-07 Revised:2020-08-15 Online:2021-05-15 Published:2021-05-09
  • About author:YANG Ru-han,born in 1996,postgra-duate.Her main research interests include ontology construction and fusion.(15061882107@163.com)
    DAI Yi-ru,born in 1972,associate researcher.Her main research interests include systems engineering and so on.
  • Supported by:
    National Science and Technology Major Project of the Ministry of Science and Technology of China(2018AAA0101800).

摘要: 随着新一代人工智能技术的发展,制造系统由以往的人物二元系统发展为人机物三元系统,跨域跨层的多元数据融合成为必然趋势。本体作为一种能在语义上描述数据的概念模型,被广泛应用于多元异构数据的集成、共享与重用中。在传统工业领域中,利用本体融合驱动数据融合的研究通常集中于信息和物理系统。针对人机物本体融合问题,文中提出了一种改进的表示学习模型TransHP。由于经典的表示学习的翻译模型未有效利用除三元组结构以外的其他信息,TransHP在TransH上加以改进,将本体中的元素构成类别三元组与实例三元组。首先针对类别概念构成的三元组,利用三元组的结构和属性进行联合训练;然后将得到的类别实体的向量表示作为训练实例向量的输入,与实例的结构信息进行联合训练,同时以置信度作为关系强度加入计算,以解决关系三元组稀疏性造成的实体在语义空间无序分布的问题。文中构建以工业领域热轧生产流程为例的人机物本体,并将其作为小样本进行测试,实验结果表明,与TransH模型相比,在人机物本体中,TransHP模型推理出实体间的关系更丰富,准确率更高。TransHP模型实现了人机物本体的融合,解决了人机物信息交互的问题,为协同决策做出了铺垫。

关键词: 本体融合, 表示学习, 人机物数据, 实体对齐, 知识推理

Abstract: With the development of the new generation of artificial intelligence technology,the manufacturing system has deve-loped from the humans-physical binary system to the humans-cyber-physical triad system,and the multivariate data fusion across domains and layers has become an inevitable trend.As a conceptual model capable of describing data semantically,ontologies are widely used for integration,sharing and reuse of multiple heterogeneous data.In traditional industries,research on using ontology fusion to drive data fusion typically focuses on information and physical systems.In order to solve the problem of humans-cyber-physical ontology fusion,an improved representation learning model TransHP is proposed in this paper.The classical translation model does not effectively use information other than the structure of the triad,TransHP makes improvements based on TransH,and elements in the ontology constitute the type triad and the instance triad.In the TransHP,first,for the type triad,the structure and properties of the triad are used for joint training.Next,the vector representations of the obtained type entities are used as the input of the training instance vectors,and the structure information of the instance is used for joint training,while the confidence level is added as the relational strength calculation to solve the problem of the disorderly distribution of entities in semantic space caused by the sparsity of the relational triad.In this paper,a human subject ontology is constructed as an example of a hot-rolling production process in an industrial field and tested as a small sample,and the experimental result shows that the TransHP model infers a richer and more accurate relationship between entities in the human subject ontology compared with the TransH model.The fusion of humans-cyber-physical ontologies has been realized through the TransHP model,which solves the problem of humans-cyber-physical information interaction and paves the way for collaborative decision-making.

Key words: Entity alignment, Humans-cyber-physical data, Knowledge inference, Ontology fusion, Representation learning

中图分类号: 

  • TP181
[1]WANG B C,ZANG J Y,QU X M,et al.Research on New-Generation Intelligent Manufacturing based on Human-Cyber-Physical Systems [J].Engineering Sciences,2018,20(4):29-34.
[2]MAEDCHE A,STAAB S.Ontology Learning for the Semantic Web[J].Intelligent Systems IEEE,2001,16(2):72-79.
[3]BORDES A,USUNIER N,GARCIA-DURAN A,et al.Translating embeddings for modeling multi-relational data[C]//Proceedings of International conference on Neural Information Processing Systems.Lake Tahoe:Curran Associates Inc,2013:2787-2795.
[4]WANG Z,ZHANG J,FENG J,et al.Knowledge graph embedding by translating onhyperplanes [C]//Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence.Menlo Park,CA:AAAI Press,2014:1112-1119.
[5]KAMIL S,GRZEGORZ D.Grounding of Human Observations as Uncertain Knowledge[C]//Proceedings of the 8th international conference on Computational Science.Berlin,Heidelberg:Springer-Verlag,2008:555-563.
[6]XIONG S,LIU P Z,SU Z Y,et al.Research on the Geographic Information Ontology Fusion Method Basedon Mapping of Semantic Matching[J].Geomatics Science and Engineering,2017(1):51-58.
[7]NATALYA F,MUSEN M A.The PROMPT suite:interactive tools for ontology merging and mapping[J].International Journal of Human-Computer Studies,2003,59(6):983-1024.
[8]DOAN A,MADHAVAN J,DHAMANKAR R,et al.Learning to Map Ontologies on the Semantic Web[J].The VLDB Journal,2003,12:303-319.
[9]QU Y Z,HU W,CHENG G.Constructing Virtual Documents for Ontology Matching[C]//Proceedings of the 15th International Conference on World Wide Web.Edinburgh:Association for Computing Machinery,2006:23-31.
[10]ZHANG Y,ZHANG F,YAO P,et al.Name Disambiguation in AMiner:Clustering,Maintenance,and Human in the Loop[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.London:Association for Computing Machinery,2018:1002-1011.
[11]BENGI O,YOSHU A,COURVILL E,et al.RepresentationLearning:A Review and New Perspectives[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2013,35(8):1798-1828.
[12]LIU Z Y,SUN M S,LIN Y K,et al.Knowledge Representation Learning:A ReView[J].Journal of Computer Research and Development,2016,53(2):247-261.
[13]BORDES A,WESTON J,COLLOBERT R,et al.Learningstructured embeddings of knowledge bases[C]//Proceedings of the 25th AAAI Conference on Artificial Intelligence.San Francisco:AAAI Press,2011:301-306.
[14]BORDES A,GLOROT X,WESTON J,et al.A semantic ma-tching energy function for learning with multi-relational data[J].Machine Learning,2014,94 (2):233-259.
[15]SOCHER R,CHEN D,MANNING C D,et al.Reasoning with neural tensor networks for knowledge base completion[C]//Proceedings of International conference on Neural Information Processing Systems.New York:Curran Associates Inc,2013:926-934.
[16]LIN Y,LIU Z,SUN M,et al.Learning entity and relation embeddings for knowledge graph completion[C]//Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence.Texas:AAAI Press,2015:2181-2187.
[17]JI G,HE S,XU L,et al.Knowledge graph embedding via dynamic mapping matrix[C]//Proceedings of ACL.2015:687-696.
[18]XIAO H,HUANG M,HAO Y,et al.TransA:An adaptive ap-proach for knowledge graph embedding[J].arXiv:1509.05490,2015.
[19]XIAO H,HUANG M,HAO Y,et al.TransG:A generativemixture model for knowledge graph embedding[J].arXiv:1509.05488,2015.
[20]XIE R,LIU Z,JIA J,et al.Representation learning of knowledge graphs with entity descriptions[C]//Proceedings of 30th AAAI Conference on Artificial Intelligence.Phoenix:AAAI Press,2016:2659-2665.
[21]XIE R,LIU Z,SUN M.Representation Learning of Knowledge Graphs with Hierarchical Types[C]//Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence.New York:AAAI Press,2016:2965-2971.
[22]TANG X,CHEN L,CUI J,et al.Knowledge representationlearning with entity descriptions,hierarchical types,and textual relations[J].Information Processing & Management,2019,56(3):809-822.
[23]LIN Y,LIU Z,SUN M.Knowledge Representation Learningwith Entities,Attributes and Relations[C]//Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence.Menlo Park:AAAI Press,2016:2866-2872.
[24]ZHANG Z,CAO L,CHEN X,et al.Representation Learning of Knowledge Graphs With Entity Attributes[J].IEEE Access,2020,8:7435-7441.
[25]LIN Y,LIU Z,SUN M.Modeling Relation Paths for Representation Learning of Knowledge Bases [J].arXiv:1506.00379,2015.
[26]SEO S,OH B,LEE K H.Reliable Knowledge Graph Path Representation Learning[J].IEEE Access,2020,8:32816-32825.
[27]SUN Z,HU W,LI C.Cross-lingual entity alignment via joint attribute-preserving embedding[C]//Proceedings of the 16th Int Semantic Web Conference.Cham:Springer International Publishing,2017:628-644.
[1] 宋杰, 梁美玉, 薛哲, 杜军平, 寇菲菲.
基于无监督集群级的科技论文异质图节点表示学习方法
Scientific Paper Heterogeneous Graph Node Representation Learning Method Based onUnsupervised Clustering Level
计算机科学, 2022, 49(9): 64-69. https://doi.org/10.11896/jsjkx.220500196
[2] 徐涌鑫, 赵俊峰, 王亚沙, 谢冰, 杨恺.
时序知识图谱表示学习
Temporal Knowledge Graph Representation Learning
计算机科学, 2022, 49(9): 162-171. https://doi.org/10.11896/jsjkx.220500204
[3] 马瑞新, 李泽阳, 陈志奎, 赵亮.
知识图谱推理研究综述
Review of Reasoning on Knowledge Graph
计算机科学, 2022, 49(6A): 74-85. https://doi.org/10.11896/jsjkx.210100122
[4] 黄璞, 杜旭然, 沈阳阳, 杨章静.
基于局部正则二次线性重构表示的人脸识别
Face Recognition Based on Locality Regularized Double Linear Reconstruction Representation
计算机科学, 2022, 49(6A): 407-411. https://doi.org/10.11896/jsjkx.210700018
[5] 蒋宗礼, 樊珂, 张津丽.
基于生成对抗网络和元路径的异质网络表示学习
Generative Adversarial Network and Meta-path Based Heterogeneous Network Representation Learning
计算机科学, 2022, 49(1): 133-139. https://doi.org/10.11896/jsjkx.201000179
[6] 王营丽, 姜聪聪, 冯小年, 钱铁云.
时间感知的兴趣点推荐方法
Time Aware Point-of-interest Recommendation
计算机科学, 2021, 48(9): 43-49. https://doi.org/10.11896/jsjkx.210400130
[7] 赵金龙, 赵中英.
基于异质信息网络表示学习与注意力神经网络的推荐算法
Recommendation Algorithm Based on Heterogeneous Information Network Embedding and Attention Neural Network
计算机科学, 2021, 48(8): 72-79. https://doi.org/10.11896/jsjkx.200800226
[8] 钱胜胜, 张天柱, 徐常胜.
多媒体社会事件分析综述
Survey of Multimedia Social Events Analysis
计算机科学, 2021, 48(3): 97-112. https://doi.org/10.11896/jsjkx.210200023
[9] 李鑫超, 李培峰, 朱巧明.
一种基于层级信息优化的有向网络表示学习方法
Directed Network Representation Method Based on Hierarchical Structure Information
计算机科学, 2021, 48(2): 100-104. https://doi.org/10.11896/jsjkx.191200033
[10] 杭婷婷, 冯钧, 陆佳民.
知识图谱构建技术:分类、调查和未来方向
Knowledge Graph Construction Techniques:Taxonomy,Survey and Future Directions
计算机科学, 2021, 48(2): 175-189. https://doi.org/10.11896/jsjkx.200700010
[11] 王雪岑, 张昱, 刘迎婕, 于戈.
基于表示学习的在线学习交互质量评价方法
Evaluation of Quality of Interaction in Online Learning Based on Representation Learning
计算机科学, 2021, 48(2): 207-211. https://doi.org/10.11896/jsjkx.201000042
[12] 富坤, 赵晓梦, 付紫桐, 高金辉, 马浩然.
基于不完全信息的深度网络表示学习方法
Deep Network Representation Learning Method on Incomplete Information Networks
计算机科学, 2021, 48(12): 212-218. https://doi.org/10.11896/jsjkx.201000015
[13] 潘雨, 邹军华, 王帅辉, 胡谷雨, 潘志松.
基于网络表示学习的深度社团发现方法
Deep Community Detection Algorithm Based on Network Representation Learning
计算机科学, 2021, 48(11A): 198-203. https://doi.org/10.11896/jsjkx.210200113
[14] 赵曼, 赵加坤, 刘金诺.
基于自我中心网络结构特征和网络表示学习的链路预测算法
Link Prediction Algorithm Based on Ego Networks Structure and Network Representation Learning
计算机科学, 2021, 48(11A): 211-217. https://doi.org/10.11896/jsjkx.201200231
[15] 纪南巡, 孙晓燕, 李祯其.
多源异构用户生成内容的融合向量化表示学习
Fusion Vectorized Representation Learning of Multi-source Heterogeneous User-generated Contents
计算机科学, 2021, 48(10): 51-58. https://doi.org/10.11896/jsjkx.200900194
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!