计算机科学 ›› 2018, Vol. 45 ›› Issue (3): 317-321.doi: 10.11896/j.issn.1002-137X.2018.03.052

• 交叉与前沿 • 上一篇    

基于接口变迁的交互流程模型挖掘方法

翟鹏珺,方贤文,刘祥伟   

  1. 安徽理工大学信息与计算科学系 安徽 淮南232001,安徽理工大学信息与计算科学系 安徽 淮南232001,安徽理工大学信息与计算科学系 安徽 淮南232001
  • 出版日期:2018-03-15 发布日期:2018-11-13
  • 基金资助:
    本文受国家自然科学基金项目(61572035,61402011,61272153),安徽省自然科学基金(1508085MF111),安徽省高校自然科学基金重点项目(KJ2014A067),安徽理工大学研究生创新基金(2017CX2048),安徽省优秀青年基金项目(ZY290)资助

Interaction Process Model Mining Method Based on Interface Transitions

ZHAI Peng-jun, FANG Xian-wen and LIU Xiang-wei   

  • Online:2018-03-15 Published:2018-11-13

摘要: 流程模型挖掘是基于系统运行记录下的事件日志来还原特征对应流程模型的技术。目前已有的挖掘方法多是基于由系统分解出的不同模块之间交互频繁且模块包含特征较少的场景。在挖掘包含较多特征、交互不频繁的流程模型方面,目前的方法存在一定的局限性。鉴于此,文中提出了基于接口变迁的交互流程模型挖掘方法。首先,利用现有的挖掘方法来挖掘模块内部的特征序,确定初始模块网;其次,遍历事件日志以查找疑似接口变迁;然后,通过挖掘特征网来确定接口变迁,并对接口变迁增加接口库所;最后,基于开放Petri网,利用合成网的观点将交互模块合成为一个完善的流程模型Petri网。通过实例分析,验证了该挖掘方法的有效性。

关键词: 流程模型挖掘,日志特征,模块网,接口变迁,特征网

Abstract: Process model mining is a technology based on the event logs recorded by running system to discover process model corresponding to features.At present,most of the mining methods are based on the frequent interaction between different modules which are decomposed by the system,and there are a few features within modules.There are some limitations of the current process mining methods in the aspect of mining process model which includes multiple features and infrequent interaction.This paper provided an interaction models process mining method based on interface transitions.Firstly,the order of features within modules is discovered using existing methods of mining to find the initial module nets.Secondly,the event log is traversed to search the suspect interface transitions.Then,the interface transition is determined by the mining of the feature net,and the interface place is added to it.Finally,based on the view of open Petri net,the interactive modules are synthesized into a complete process model Petri net.The analysis of instance is used to verify the effectiveness of the mining method.

Key words: Process model mining,Log feature,Module net,Interface transition,Feature net

[1] THALER T,MAURER D,ANGELIS V D,et al.Mining the Usability of Business Process Modeling Tools:Concept and Case Study[C]∥Business Process Management.2015:152-166.
[2] FANG X,WU J,LIU X.An Optimized Method of BusinessProcess Mining Based on the Behavior Profile of Petri Nets[J].Information Technology Journal,2007,13(1):86.
[3] LEEMANS S J J,FAHLAND D,AALST W.Discovering Block-Structured Process Models from Incomplete Event Logs[C]∥International Conference on Application and Theory of Petri Nets and Concurrency.Springer International Publishing,2014:91-110.
[4] FAHLAND D,AALST W.Model repair - aligning process mo-dels to reality[J].Information Systems,2013,47(1):220-243.
[5] TAX N,SIDOROVA N,HAAKMA R,et al.Mining LocalProcess Models[J].Journal of Innovation in Digital Ecosystems,2016,3(2):183-196.
[6] BUIJS J C A M,VAN DONGEN B F,AALST W.A genetic algorithm for discovering process trees[C]∥IEEE Congress on Evolutionary Computation.IEEE,2012:1-8.
[7] AALST W.Decomposing Petri nets for process mining:A ge-neric approach[J].Distributed and Parallel Database,2013,4(31):471-507.
[8] AALST W M P.A General Divide and Conquer Approach for Process Mining[J].Computer Science and Information Systems,2011,12(2):1-10.
[9] VAN DER WERF J M E M,KAATS E.Discovery of Functional Architectures From Event Logs[C]∥International Workshop on Petri Nets and Software Engineering.2015:227-243.
[10] SHEJALE A,GANGAWANE V.Tree Based Mining for Discovering Patterns of Human Interactions in Meetings[J].International Journal of Engineering Research & Applications,2014,4(7):78-83.
[11] 吴哲辉.Petri网理论[M].北京:机械工业出版社,2006:6-22.
[12] SMIRNOV S,WEIDLICH M,MENDLING J.Business process model abstraction based on behavioral profiles[M]∥Service-Oriented Computing.Heidelberg:Springer Berlin Heidelberg,2010:1-16.
[13] BERA D,VAN HEE K M, VAN DER WERF J M E M.Designing weakly terminating ROS systems[C]∥International Conference on Applications and Theory of Petri Nets and Concurrency.Springer Berlin Heidelberg,2012:328-347.
[14] AALST W,LOHMANN N,MASSUTHE P,et al.From Public Views to Private Views:Correctness-by-Design for Services[C]∥International Conference on Web Services and Formal Methods.2007:139-153.
[15] LEEMANS S J J,FAHLAND D,AALST W.Discovering blockstructured process models from event logs-a constructive approach[C]∥International Conference on Application and Theory of Petri Nets and Concurrency.2013:311-329.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 雷丽晖,王静. 可能性测度下的LTL模型检测并行化研究[J]. 计算机科学, 2018, 45(4): 71 -75 .
[2] 孙启,金燕,何琨,徐凌轩. 用于求解混合车辆路径问题的混合进化算法[J]. 计算机科学, 2018, 45(4): 76 -82 .
[3] 张佳男,肖鸣宇. 带权混合支配问题的近似算法研究[J]. 计算机科学, 2018, 45(4): 83 -88 .
[4] 伍建辉,黄中祥,李武,吴健辉,彭鑫,张生. 城市道路建设时序决策的鲁棒优化[J]. 计算机科学, 2018, 45(4): 89 -93 .
[5] 史雯隽,武继刚,罗裕春. 针对移动云计算任务迁移的快速高效调度算法[J]. 计算机科学, 2018, 45(4): 94 -99 .
[6] 周燕萍,业巧林. 基于L1-范数距离的最小二乘对支持向量机[J]. 计算机科学, 2018, 45(4): 100 -105 .
[7] 刘博艺,唐湘滟,程杰仁. 基于多生长时期模板匹配的玉米螟识别方法[J]. 计算机科学, 2018, 45(4): 106 -111 .
[8] 耿海军,施新刚,王之梁,尹霞,尹少平. 基于有向无环图的互联网域内节能路由算法[J]. 计算机科学, 2018, 45(4): 112 -116 .
[9] 崔琼,李建华,王宏,南明莉. 基于节点修复的网络化指挥信息系统弹性分析模型[J]. 计算机科学, 2018, 45(4): 117 -121 .
[10] 王振朝,侯欢欢,连蕊. 抑制CMT中乱序程度的路径优化方案[J]. 计算机科学, 2018, 45(4): 122 -125 .