计算机科学 ›› 2018, Vol. 45 ›› Issue (3): 274-276, 282.doi: 10.11896/j.issn.1002-137X.2018.03.044

• 图形图像与模式识别 • 上一篇    下一篇

基于暗原色先验与MTV模型的单幅彩色图像去雾

赵胜楠,魏伟波,潘振宽,李帅   

  1. 青岛大学计算机科学技术学院 山东 青岛266071,青岛大学计算机科学技术学院 山东 青岛266071,青岛大学计算机科学技术学院 山东 青岛266071,青岛大学计算机科学技术学院 山东 青岛266071
  • 出版日期:2018-03-15 发布日期:2018-11-13
  • 基金资助:
    本文受国家自然科学基金项目(61170106),山东省高等学校科技计划项目(J14LN39)资助

Single Color Image Dehazing Based on Dark Channel Prior and MTV Model

ZHAO Sheng-nan, WEI Wei-bo, PAN Zhen-kuan and LI Shuai   

  • Online:2018-03-15 Published:2018-11-13

摘要: 鉴于利用大气信息或景深信息复原雾天图像的方法不能局部修正恢复结果,文中融合大气散射模型与变分偏微分方程,提出了暗原色先验与MTV (Multi- channel Total Variation)模型相结合的单幅彩色图像去雾算法(H-MTV模型)。利用Dual Bregman算法,通过引入辅助变量和Bregman迭代参数将问题转化为利用对偶变量的半隐式迭代计算和主变量的精确计算公式来求解该模型。最后,将H-MTV模型与He,Kimmel Retinex等经典算法的实验结果进行分析和比较,验证了所提算法的有效性和优越性。

关键词: 彩色图像去雾,暗原色先验,MTV模型,Dual Bregman算法

Abstract: Combining variational partial differential equation with the atmospheric attenuation model,a single color ima-ge dehazing algorithm on the basis of dark channel prior and MTV model called H-MTV model was proposed.Then,using auxiliary variables and Bregman iterative parameters to calculate the model,this paper designed dual Bregman algorithm.Finally, H-MTV model was compared with He algorithm and Kimmel Retinex algorithm.Experimental results show that H-MTV model is superior to the traditional methods qualitatively and quantitatively.

Key words: Color image dehazing,Dark channel prior,MTV model,Dual Bregman algorithm

[1] HAUTIRE N,TAREL J P,HALMAOUI H,et al.Enhanced fog detection and free-space segmentation for car navigation[J].Machine Vision and Applications,2014,25(3):667-679.
[2] TANG Z X.Image Dehazing Based on Haziness Analysis[J].International Journal of Automation and Computing,2014,11(1):78-86.
[3] OAKLEY J P,SATHERLEY B L.Improving image quality in poor visibility conditions using a physical model for contrast degradation[J].IEEE Transactions on Image Processing,1998,7(2):167-179.
[4] TAN R.Visibility in bad weather from a single image [C]∥Proceeding of IEEE Conference on Computer Vision and Pattern Recognition.Washington,DC:IEEE Computer Society,2008:2347-2354.
[5] HE K,SUN J,TANG X.Single image haze removal using darkchannel prior[C]∥IEEE Conference on Computer Vision and Pattern Recognition,2009(CVPR 2009).IEEE,2011:1956-1963.
[6] LEVIN A,LISCHINSKI D,WEISS Y.A Closed Form Solution to Natural Image Matting[C]∥IEEE Computer Society Confe-rence on Computer Vision and Pattern Recognition.IEEE Computer Society,2006:61-68.
[7] HE K,SUN J,TANG X.Guided Image Filtering[M]∥Compu-ter Vision-ECCV 2010.Berlin:Springer Berlin Heidelberg,2010:1397-1409.
[8] NARASIMHAN S G,NAYAR S K.Contrast Restoration ofWeather Degraded Images[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2003,25(6):713-724.
[9] ZHOU L,BI D Y,HE L Y.Single color image dehazing using variational partial differential equation [J].Optics and Precision Engineering,2015,3(5):1465-1472.(in Chinese) 周理,毕笃彦,何林远.融合变分偏微分方程的单幅彩色图像去雾[J].光学精密工程,2015,3(5):1465-1472.
[10] SCHECHNER Y Y,NARASIMHAN S G,NAYAR S K.In-stant dehazing of images using polarization[C]∥Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2001(CVPR 2001).IEEE,2001:325-332.
[11] SCHECHNER Y Y,NARASIMHAN S G,NAYAR S K.Polarization-based vision through haze[J].Applied Optics,2003,42(3):511-525.
[12] YANG J,YIN W,ZHANG Y,et al.A fast algorithm for edge-preserving variation multichannel image restoration[J].SIAM Journal on Imaging Science,2009,2(2):569-592.
[13] BRESSON X,CHAN T F.Fast minimization of the vectorial total variation norm and application to color image processing [J].Inverse Problems and Imaging,2008,2(4):455-484.
[14] AUJOL J F,KANG S H.Color image decomposition and restoration [J].Journal of Visual Communicationand Image Representation,2006,17(4):916-928.
[15] DUVAL V,AUJOL J F,VESE L.A projected gradient algo-rithm for color image decomposition[J/OL].https://www.math.u-bordeaux.fr/~jaujol/PAPERS/CMLA2008-21.pdf.
[16] ZACH C,POCK T,BISCHOF H.A Duality Based Approach for Realtime TV-L1 Optical Flow[C]∥Proceedings of DAGM’07.Berlin,Germany:Springer,2007.
[17] POCK T,URSCHLER M,ZACH C,et al.A Duality Based Algorithm for TV-L1-Optical-Flow Image Registration[M]∥Me-dical Image Computing and Computer-Assisted Intervention-MICCAI 2007.Berlin:Springer Berlin Heidelberg,2007:511-518.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 雷丽晖,王静. 可能性测度下的LTL模型检测并行化研究[J]. 计算机科学, 2018, 45(4): 71 -75, 88 .
[2] 夏庆勋,庄毅. 一种基于局部性原理的远程验证机制[J]. 计算机科学, 2018, 45(4): 148 -151, 162 .
[3] 厉柏伸,李领治,孙涌,朱艳琴. 基于伪梯度提升决策树的内网防御算法[J]. 计算机科学, 2018, 45(4): 157 -162 .
[4] 王欢,张云峰,张艳. 一种基于CFDs规则的修复序列快速判定方法[J]. 计算机科学, 2018, 45(3): 311 -316 .
[5] 孙启,金燕,何琨,徐凌轩. 用于求解混合车辆路径问题的混合进化算法[J]. 计算机科学, 2018, 45(4): 76 -82 .
[6] 张佳男,肖鸣宇. 带权混合支配问题的近似算法研究[J]. 计算机科学, 2018, 45(4): 83 -88 .
[7] 伍建辉,黄中祥,李武,吴健辉,彭鑫,张生. 城市道路建设时序决策的鲁棒优化[J]. 计算机科学, 2018, 45(4): 89 -93 .
[8] 刘琴. 计算机取证过程中基于约束的数据质量问题研究[J]. 计算机科学, 2018, 45(4): 169 -172 .
[9] 钟菲,杨斌. 基于主成分分析网络的车牌检测方法[J]. 计算机科学, 2018, 45(3): 268 -273 .
[10] 史雯隽,武继刚,罗裕春. 针对移动云计算任务迁移的快速高效调度算法[J]. 计算机科学, 2018, 45(4): 94 -99, 116 .