计算机科学 ›› 2018, Vol. 45 ›› Issue (3): 263-267.doi: 10.11896/j.issn.1002-137X.2018.03.042

• 图形图像与模式识别 • 上一篇    下一篇

基于非局部均值和总变分最小化的单视频超分辨率算法

陈诚,常侃,莫彩网,李天亦,覃团发   

  1. 广西大学计算机与电子信息学院 南宁530004,广西大学计算机与电子信息学院 南宁530004;广西大学广西多媒体通信与网络技术重点实验室 南宁530004;广西大学广西高校多媒体通信与信息处理重点实验室 南宁530004,广西大学计算机与电子信息学院 南宁530004,广西大学计算机与电子信息学院 南宁530004,广西大学计算机与电子信息学院 南宁530004;广西大学广西多媒体通信与网络技术重点实验室 南宁530004;广西大学广西高校多媒体通信与信息处理重点实验室 南宁530004
  • 出版日期:2018-03-15 发布日期:2018-11-13
  • 基金资助:
    本文受国家自然科学基金项目(61761005,61401108),广西自然科学基金项目(2016GXNSFAA380154)资助

Single Video Super-resolution Algorithm Based on Non-local Means and Total Variation Minimization

CHEN Cheng, CHANG Kan, MO Cai-wang, LI Tian-yi and QIN Tuan-fa   

  • Online:2018-03-15 Published:2018-11-13

摘要: 传统的基于重建的单视频超分辨率方法能够获得较好的重建效果。然而,已有算法没有充分利用视频内的帧间、帧内相关性,重建效果仍有待提升。针对这一问题,提出了一种新的单视频超分辨率算法。为充分利用帧内相关性,采用非局部均值模型表征帧内非局部结构特性,采用总变分模型表征帧内局部结构特性;为了探索帧间相关性,采用光流法进行帧间预测。最后,为了求解所建立的优化问题,提出了基于split-Bregman方法的快速迭代算法。实验结果表明,与同类算法相比,所提算法在主、客观质量上均有相应的提升。

关键词: 视频超分辨率,非局部均值,总变分,光流法

Abstract: The traditional reconstruction-based single video super-resolution algorithms are able to solve the video super-resolution problem well.However,the existing algorithms have not fully exploited the correlation in intra-frames and inter-frames,which leaves much space for further improvement.This paper proposed a new single video super-resolution algorithm to solve this problem.When exploiting the spatial correlations,the non-local means model is used to get the non-local structural property and the total variation model is utilized to get the local structural property.In order to exploit inter-frame correlation,optical flow method is applied to perform inter-frame estimation.Finally,to solve the established optimization problem,a split-Bregman method based fast iteration algorithm was proposed.The experimental results demonstrate the effectiveness of the proposed algorithm.Compared with other algorithms,the proposed algorithm is able to achieve better subjective and objective results.

Key words: Video super-resolution,Non-local means,Total variation,Optical flow

[1] XU Y M,SONG J W,XIAO X J.Super resolution algorithm based on sub-pixel block matching and dictionary learning[J].Computer Science,2016,3(8):304-308.(in Chinese) 徐煜明,宋佳伟,肖贤建.基于亚像素块匹配和字典学习的超分辨率算法[J].计算机科学,2016,3(8):304-308.
[2] HUNG E M,GARCIA D C,DE QUEIROZ R L.Example-based enhancement of degraded video[J].IEEE Signal Processing Letters,2014,21(9):1140-1144.
[3] HUNG E M,DE QUEIROZ R L,BRANDI F,et al.Video super-resolution using codebooks derived From key-Frames[J].IEEE Transactions on Circuits and Systems for Video Technology,2012,9(22):1321-1331.
[4] LI L H,DU J P,LIANG M Y,et al.Video super-resolution algorithm based on spatial-temporal feature and neural network[J].Journal of Beijing University of Posts and Telecommunications,2016,39(4):1-6.(in Chinese) 李玲慧,杜军平,梁美玉,等.基于时空特征和神经网络的视频超分辨率算法[J].北京邮电大学学报,2016,39(4):1-6.
[5] LEDIG C,THEIS L,HUSZR F,et al.Photo-realistic singleimage super-resolution using a generative adversarial network[J].arXiv preprint arXiv:1609.04802,2016.
[6] RUDIN L I,OSHER S,FATEMI E.Nonlinear total variation based noise removal algorithms[J].Physica D:Nonlinear Phenomena,1992,60(1):259-268.
[7] LI C,YIN W,JIANG H,et al.An efficient augmented Lagran-gian method with applications to total variation minimization[J].Computational Optimization and Applications,2013,56(3):507-530.
[8] FARSIU S,ROBINSON M D,ELAD M,et al.Fast and robust multiframe super resolution[J].IEEE Transactions on Image Processing,2004,13(10):1327-1344.
[9] YUAN Q,ZHANG L,SHEN H.Regional spatially adaptive total variation super-resolution with spatial information filtering and clustering[J].IEEE Transactions on Image Processing,2013,22(6):2327-2342.
[10] BELEKOS S P,GALATSANOS N P,KATSAGGELOS A K.Maximum a posteriori video super-resolution using a new multichannel image prior[J].IEEE Transactions on Image Proces-sing,2010,19(6):1451-1464.
[11] ZHANG Y L,GAN Z L,ZHU X C.Video super-resolutionmethod based on similarity constraints[J].Journal of Image and Graphics,2013,18(7):761-767.(in Chinese) 张义轮,干宗良,朱秀昌.相似性约束的视频超分辨率重建[J].中国图象图形学报,2013,18(7):761-767.
[12] ZHU Y,LI K,JIANG J.Video super-resolution based on automatic key-frame selection and feature-guided variational optical flow[J].Signal Processing:Image Communication,2014,29(8):875-886.
[13] LI K,ZHU Y,YANG J,et al.Video super-resolution using anadaptive superpixel-guided auto-regressive model[J].Pattern Recognition,2016,51(C):59-71.
[14] LU S,OSHER S J.Decomposition of images by the ani-sotropic Rudin-Osher-Fatemimodel[J].Communications on Pure and Applied Mathematics,2004,57(12):1609-1626.
[15] BUADES A,COLL B,MOREL J M.A non-local algorithm for image denoising[C]∥IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2005(CVPR 2005).IEEE,2005:60-65.
[16] SONG B C,JEONG S C,CHOI Y.Video super-resolution algorithm using bi-directional overlapped block motion compensation and on-the-fly dictionary training[J].IEEE Transactions on Circuits and Systems for Video Technology,2011,21(3):274-285.
[17] KIM K I,KWON Y.Single-image super-resolution using sparse regression and natural image prior[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32(6):1127-1133.
[18] BRANDI F,QUEIROZ R,MUKHERJEE D.Super-resolution of video using key frames and motion estimation[C]∥2008 15th IEEE International Conference on Image Processing.IEEE,2008:321-324.
[19] GOLDSTEIN T,OSHER S.The split Bregman method for L1-regularized problems[J].SIAM Journal on Imaging Sciences,2009,2(2):323-343.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 雷丽晖,王静. 可能性测度下的LTL模型检测并行化研究[J]. 计算机科学, 2018, 45(4): 71 -75, 88 .
[2] 夏庆勋,庄毅. 一种基于局部性原理的远程验证机制[J]. 计算机科学, 2018, 45(4): 148 -151, 162 .
[3] 厉柏伸,李领治,孙涌,朱艳琴. 基于伪梯度提升决策树的内网防御算法[J]. 计算机科学, 2018, 45(4): 157 -162 .
[4] 王欢,张云峰,张艳. 一种基于CFDs规则的修复序列快速判定方法[J]. 计算机科学, 2018, 45(3): 311 -316 .
[5] 孙启,金燕,何琨,徐凌轩. 用于求解混合车辆路径问题的混合进化算法[J]. 计算机科学, 2018, 45(4): 76 -82 .
[6] 张佳男,肖鸣宇. 带权混合支配问题的近似算法研究[J]. 计算机科学, 2018, 45(4): 83 -88 .
[7] 伍建辉,黄中祥,李武,吴健辉,彭鑫,张生. 城市道路建设时序决策的鲁棒优化[J]. 计算机科学, 2018, 45(4): 89 -93 .
[8] 刘琴. 计算机取证过程中基于约束的数据质量问题研究[J]. 计算机科学, 2018, 45(4): 169 -172 .
[9] 钟菲,杨斌. 基于主成分分析网络的车牌检测方法[J]. 计算机科学, 2018, 45(3): 268 -273 .
[10] 史雯隽,武继刚,罗裕春. 针对移动云计算任务迁移的快速高效调度算法[J]. 计算机科学, 2018, 45(4): 94 -99, 116 .