计算机科学 ›› 2019, Vol. 46 ›› Issue (11A): 80-82.

• 智能计算 • 上一篇    下一篇

抗冲激噪声的核分式低次幂自适应滤波算法

董庆, 林云   

  1. (重庆邮电大学光电工程学院 重庆400065)
  • 出版日期:2019-11-10 发布日期:2019-11-20
  • 通讯作者: 林云(1968-),男,博士,副教授,主要研究方向为压缩感知、稀疏信号处理,E-mail:linyun@cqupt.edu。
  • 作者简介:董庆(1994-),男,硕士生,主要研究方向为核自适应滤波算法,E-mail:550199689@qq.com。

Kernel Fractional Lower Power Adaptive Filtering Algorithm Against Impulsive Noise

DONG Qing, LIN Yun   

  1. (College of Optoelectronic Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China)
  • Online:2019-11-10 Published:2019-11-20

摘要: 文中提出了一种基于分数低阶统计误差准则的抗非高斯冲激噪声的核分式低次幂(KFLP)算法。在存在脉冲干扰的环境下,该算法利用权重更新公式中存在瞬时估计误差的倒数系数的有利特性,使得算法在瞬时估计误差突然增大时的权重向量自动停止更新,由此消除了脉冲干扰对权重向量的影响。仿真结果表明,在相同的冲激噪声环境下,随着代价函数的幂次逐渐趋近于1,核分式低次幂算法的稳定性将得到进一步的提高。另一方面,在非高斯脉冲环境下与采用传统的均方误差准则的核最小均方(Kernel Least-Mean-Square,KLMS)算法相比,所提算法的收敛曲线更加平滑,性能更加稳定。

关键词: 非高斯冲激噪声, 分数低阶统计误差准则, 核分式低次幂算法, 核最小均方算法, 均方误差准则

Abstract: To filter out the non-Gaussian impulsive noises,a kernel fractional lower power (KFLP) algorithm based on the fractional lower order statistics error criterion was proposed.Due to the favorable characteristics of the fractional lower order power coefficient of reciprocal,the adaptive update of the weight vector will stop automatically in the pre-sence of impulsive interference.Thus,the effect of updating the weight vector caused by the impulse interference is eliminated.Simulation results show that as the power of the cost function approaches unity,the robustness of the kernel-type low-power algorithm improves in the non-Gaussian impulsive environment.Moreover,compared with the kernel least-mean-square (KLMS) algorithm based on the mean square error criterion,the proposed algorithm has smoother convergence curve and more stable performance.

Key words: Fractional lower order statistics error criterion, Kernel fractional low power algorithm, Kernel least-mean-square algorithm, Mean square error criterion, Non-Gaussian impulsive noise

中图分类号: 

  • TP911
[1]ENGEL Y,MANNOR S,MEIR R.The kernel recursive least-squares algorithm[J].IEEE Transactions on signal processing,2004,52(8):2275-2285.
[2]LIU W,POKHAREL P P,PRINCIPE J C.The kernel least-mean-square algorithm[J].IEEE Transactions on Signal Processing,2008,56(2):543-554.
[3]PARREIRA W D,BERMUDEZ J C M,RICHARD C,et al.Stochastic behavior analysis of the Gaussian kernel least-mean-square algorithm[J].IEEE Transactions on Signal Processing,2012,60(5):2208-2222.
[4]CHEN J,GAO W,RICHARD C,et al.Convergence analysis of kernel LMS algorithm with pre-tuned dictionary[C]∥2014 IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP).IEEE,2014:7243-7247.
[5]LIU W,PRINCIPE J C,HAYKIN S.Kernel adaptive filtering:a comprehensive introduction[M].John Wiley & Sons,2011.
[6]GAO W,CHEN J.Kernel Least Mean MYM p MYM-Power Algorithm[J].IEEE Signal Processing Letters,2017,24(7):996-1000.
[7]PEI S C,TSENG C C.Least mean p-power error criterion for adaptive FIR filter[J].IEEE Journal on Selected Areas in Communications,1994,12(9):1540-1547.
[8]HAYKIN S.Kernel Adaptive Filtering:A Comprehensive Introduction[M].2010.
[9]VAPNIK V.The nature of statistical learning theory[M].Springer science & business media,2013.
[10]ARONSZAJN N.Theory of reproducing kernels[J].Transactions of the American Mathematical Society,1950,68(3):337-404.
[11]BURGES C J C.A tutorial on support vector machines for pattern recognition[J].Data mining and knowledge discovery,1998,2(2):121-167.
[12]ZHU Z,GAO X,CAO L,et al.Analysis on the adaptive filter based on LMS algorithm[J].Optik-International Journal for Light and Electron Optics,2016,127(11):4698-4704.
[1] 陈平, 郭秋歌, 李攀, 崔峰.
OFDM系统中基于贝叶斯学习的联合稀疏信道估计与数据检测
Joint Sparse Channel Estimation and Data Detection Based on Bayesian Learning in OFDM System
计算机科学, 2020, 47(11A): 349-353. https://doi.org/10.11896/jsjkx.191100090
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!