计算机科学 ›› 2020, Vol. 47 ›› Issue (9): 157-162.doi: 10.11896/jsjkx.190800160

• 计算机图形学&多媒体 • 上一篇    下一篇

基于信息熵的级联Siamese网络目标跟踪

赵钦炎1, 李宗民1, 刘玉杰1, 李华2   

  1. 1 中国石油大学(华东)计算机与通信工程学院 山东 青岛266580
    2 中国科学院计算技术研究所智能信息处理重点实验室 北京100190
  • 收稿日期:2019-08-30 发布日期:2020-09-10
  • 通讯作者: 李宗民(lizongmin@upc.edu.cn)
  • 作者简介:zhaoqinyan@s.upc.edu.cn
  • 基金资助:
    国家自然科学基金(61379106,61379082,61227802);山东省自然科学基金(ZR2013FM036,ZR2015FM011);中央高校基本科研业务费专项资金资助(18CX06046A)

Cascaded Siamese Network Visual Tracking Based on Information Entropy

ZHAO Qin-yan1, LI Zong-min1, LIU Yu-jie1, LI Hua2   

  1. 1 College of Computer & Communication Engineering,China University of Petroleum,Qingdao,Shandong 266580,China
    2 Key Laboratory of Intelligent Information Processing,Institute of Computing Technology,Chinese Academy of Sciences,Beijing 100190,China
  • Received:2019-08-30 Published:2020-09-10
  • About author:ZHAO Qin-yan,born in 1994,postgra-duate,is a member of China Computer Federation.His main research interests include computer vision,picture processing and machine learning.
    LI Zong-min,born in 1965,professor,is a member of China Computer Federation.His main research interests include computer graphics,picture processing and visualization in scientific computing.
  • Supported by:
    National Natural Science Foundation of China (61379106,61379082,61227802),Shandong Provincial Natural Science Foundation (ZR2013FM036, ZR2015FM011) and Fundamental Research Funds for the Central Universities (18CX06046A).

摘要: 目标跟踪是计算机视觉领域的一个重要研究方向,针对目前算法对于目标外观变化的鲁棒性较差等问题,提出了一种基于信息熵的级联Siamese网络目标跟踪方法。首先利用孪生神经网络(Siamese network)对第一帧目标模板和当前帧待检测区域提取深度卷积特征,并通过相关性计算响应图;然后根据定义的信息熵和平均峰值系数评价响应图质量,针对质量差的响应图对卷积特征进行模型因子更新;最后利用最终的响应图确定目标位置并计算最佳尺度。在VOT2016,VOT2017数据集上进行实验,结果证明在保证实时运行的基础上所提算法的精度优于其他算法。

关键词: 尺度估计, 目标跟踪, 神经网络, 信息熵

Abstract: Visual tracking is an important research direction in the field of computer vision.In view of the problems such as poor robustness of the current algorithms to object appearance changes,this paper proposes a cascaded Siamese network visual trac-king method based on information entropy.Firstly,the deep convolution feature is extracted from the first frame target template and the area to be detected of the current frame by using the Siamese network,and the response map is calculated by correlation.Then,the quality of the response map is evaluated according to the defined information entropy and the average peak coefficient,and for the response map with poor quality,the model factor of convolution feature is updated.Finally,the final response map is used to determine the target position and calculate the optimal scale.The experimental results on VOT2016 and VOT2017 datasets show that the proposed method is superior to other algorithms on the basis of ensuring real-time operation.

Key words: Information entropy, Neural networks, Scale estimation, Visual tracking

中图分类号: 

  • TP391.41
[1] BOLME D S,BEVERIDGE J R,DRAPER B A,et al.Visual object tracking using adaptive correlation filters[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition.2010:2544-2550.
[2] HENRIQUES J F,CASEIRO R,MARTINS P,et al.High-speed tracking with kernelized correlation filters[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(3):583-596.
[3] WANG M,LIU Y,HUANG Z.Large Margin Object Tracking with Circulant Feature Maps[C]//The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).2017:4021-4029.
[4] MA C,HUANG J B,YANG X,et al.Hierarchical convolutional features for visual tracking[C]//Proceedings of the IEEE International Conference on Computer Vision.2015:3074-3082.
[5] LI Z M,FU H J,LIU Y J,et al.Multi-Template Correlation Filter Tracking Based on Deep Feature[C]//conference of Computer-Aided Design & Computer Graphics.2018.
[6] NAM H,HAN B.Learning multi-domain convolutional neural networks for visual tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:4293-4302.
[7] BERTINETTO L,VALMADRE J,HENRIQUES J F,et al.Fully-convolutional siamese networks for object tracking[C]//European Conference on Computer Vision.Springer,Cham,2016:850-865.
[8] GUO Q,FENG W,ZHOU C,et al.Learning dynamic siamese network for visual object tracking[C]//Proceedings of the IEEE International Conference on Computer Vision.2017:1763-1771.
[9] HE A,LUO C,TIAN X,et al.A twofold siamese network forreal-time object tracking[C]//Proceedings of the IEEE Confe-rence on Computer Vision and Pattern Recognition.2018:4834-4843.
[10] HINTON G E.Rectified Linear Units Improve Restricted Boltzmann Machines Vinod Nair[C]//International Conference on International Conference on Machine Learning.Omnipress,2010.
[11] SHANNON C E.A mathematical theory of communication[J].Bell Labs Technical Journal,1948,27(4):379-423.
[12] ZHU Z,WANG Q,LI B,et al.Distractor-aware siamese net-works for visual object tracking[C]//Proceedings of the European Conference on Computer Vision (ECCV).2018:101-117.
[13] LI B,YAN J,WU W,et al.High performance visual tracking with siamese region proposal network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:8971-8980.
[14] KRISTAN M,LEONARDIS A,MATAS J,et al.The Visual Object Tracking VOT2016 Challenge Results[C]//IEEE International Conference on Computer Vision Workshops.IEEE Computer Society,2016.
[15] KRISTAN M,LEONARDIS A,MATAS J,et al.The Visual Object Tracking VOT2017 Challenge Results[C]//2017 IEEE International Conference on Computer Vision Workshop (ICCVW).IEEE Computer Society,2017.
[16] VOJIR T,NOSKOVA J,MATAS J.Robust scale-adaptivemean-shift for tracking[J].Pattern Recognition Letters,2014,49:250-258.
[17] DE ATH G,EVERSON R.Part-Based Tracking by Sampling[J].arXiv:1805.08511,2018.
[18] POSSEGGER H,MAUTHNER T,BISCHOF H.In defense of color-based model-free tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2015:2113-2120.
[19] ABDELPAKEY M H,SHEHATA M S,MOHAMED M M.Denssiam:End-to-end densely-siamese network with self-attention model for object tracking[C]//International Symposium on Visual Computing.Springer,Cham,2018:463-473.
[20] DANELLJAN M,HÄGER G,KHAN F,et al.Accurate scaleestimation for robust visual tracking[C]//British Machine Vision Conference,Nottingham.BMVA Press,2014:1-5.
[21] WANG Q,GAO J,XING J,et al.Dcfnet:Discriminant correlation filters network for visual tracking[J].arXiv:1704.04057,2017.
[22] ZHANG J,MA S,SCLAROFF S.MEEM:robust tracking via multiple experts using entropy minimization[C]//European Conference on Computer Vision.Springer,Cham,2014:188-203.
[1] 周芳泉, 成卫青.
基于全局增强图神经网络的序列推荐
Sequence Recommendation Based on Global Enhanced Graph Neural Network
计算机科学, 2022, 49(9): 55-63. https://doi.org/10.11896/jsjkx.210700085
[2] 周乐员, 张剑华, 袁甜甜, 陈胜勇.
多层注意力机制融合的序列到序列中国连续手语识别和翻译
Sequence-to-Sequence Chinese Continuous Sign Language Recognition and Translation with Multi- layer Attention Mechanism Fusion
计算机科学, 2022, 49(9): 155-161. https://doi.org/10.11896/jsjkx.210800026
[3] 宁晗阳, 马苗, 杨波, 刘士昌.
密码学智能化研究进展与分析
Research Progress and Analysis on Intelligent Cryptology
计算机科学, 2022, 49(9): 288-296. https://doi.org/10.11896/jsjkx.220300053
[4] 李宗民, 张玉鹏, 刘玉杰, 李华.
基于可变形图卷积的点云表征学习
Deformable Graph Convolutional Networks Based Point Cloud Representation Learning
计算机科学, 2022, 49(8): 273-278. https://doi.org/10.11896/jsjkx.210900023
[5] 郝志荣, 陈龙, 黄嘉成.
面向文本分类的类别区分式通用对抗攻击方法
Class Discriminative Universal Adversarial Attack for Text Classification
计算机科学, 2022, 49(8): 323-329. https://doi.org/10.11896/jsjkx.220200077
[6] 王润安, 邹兆年.
基于物理操作级模型的查询执行时间预测方法
Query Performance Prediction Based on Physical Operation-level Models
计算机科学, 2022, 49(8): 49-55. https://doi.org/10.11896/jsjkx.210700074
[7] 陈泳全, 姜瑛.
基于卷积神经网络的APP用户行为分析方法
Analysis Method of APP User Behavior Based on Convolutional Neural Network
计算机科学, 2022, 49(8): 78-85. https://doi.org/10.11896/jsjkx.210700121
[8] 朱承璋, 黄嘉儿, 肖亚龙, 王晗, 邹北骥.
基于注意力机制的医学影像深度哈希检索算法
Deep Hash Retrieval Algorithm for Medical Images Based on Attention Mechanism
计算机科学, 2022, 49(8): 113-119. https://doi.org/10.11896/jsjkx.210700153
[9] 沈祥培, 丁彦蕊.
多检测器融合的深度相关滤波视频多目标跟踪算法
Multi-detector Fusion-based Depth Correlation Filtering Video Multi-target Tracking Algorithm
计算机科学, 2022, 49(8): 184-190. https://doi.org/10.11896/jsjkx.210600004
[10] 檀莹莹, 王俊丽, 张超波.
基于图卷积神经网络的文本分类方法研究综述
Review of Text Classification Methods Based on Graph Convolutional Network
计算机科学, 2022, 49(8): 205-216. https://doi.org/10.11896/jsjkx.210800064
[11] 闫佳丹, 贾彩燕.
基于双图神经网络信息融合的文本分类方法
Text Classification Method Based on Information Fusion of Dual-graph Neural Network
计算机科学, 2022, 49(8): 230-236. https://doi.org/10.11896/jsjkx.210600042
[12] 齐秀秀, 王佳昊, 李文雄, 周帆.
基于概率元学习的矩阵补全预测融合算法
Fusion Algorithm for Matrix Completion Prediction Based on Probabilistic Meta-learning
计算机科学, 2022, 49(7): 18-24. https://doi.org/10.11896/jsjkx.210600126
[13] 杨炳新, 郭艳蓉, 郝世杰, 洪日昌.
基于数据增广和模型集成策略的图神经网络在抑郁症识别上的应用
Application of Graph Neural Network Based on Data Augmentation and Model Ensemble in Depression Recognition
计算机科学, 2022, 49(7): 57-63. https://doi.org/10.11896/jsjkx.210800070
[14] 张颖涛, 张杰, 张睿, 张文强.
全局信息引导的真实图像风格迁移
Photorealistic Style Transfer Guided by Global Information
计算机科学, 2022, 49(7): 100-105. https://doi.org/10.11896/jsjkx.210600036
[15] 戴朝霞, 李锦欣, 张向东, 徐旭, 梅林, 张亮.
基于DNGAN的磁共振图像超分辨率重建算法
Super-resolution Reconstruction of MRI Based on DNGAN
计算机科学, 2022, 49(7): 113-119. https://doi.org/10.11896/jsjkx.210600105
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!