计算机科学 ›› 2020, Vol. 47 ›› Issue (9): 213-218.doi: 10.11896/jsjkx.190700186

• 人工智能 • 上一篇    下一篇

基于自适应渐消UKF的FastSLAM算法

王秉洲, 王慧斌, 沈洁, 张丽丽   

  1. 河海大学计算机与信息学院 南京210098
  • 收稿日期:2019-07-25 发布日期:2020-09-10
  • 通讯作者: 王慧斌(hbwang@hhu.edu.cn)
  • 作者简介:465716083@qq.com
  • 基金资助:
    国家自然科学基金(51709083)

FastSLAM Algorithm Based on Adaptive Fading Unscented Kalman Filter

WANG Bing-zhou, WANG Hui-bin, SHEN Jie, ZHANG Li-li   

  1. School of Computer and Information,Hohai University,Nanjing 210098,China
  • Received:2019-07-25 Published:2020-09-10
  • About author:WANG Bing-zhou,born in 1995,postgraduate.His main research interests include signal processing and so on.
    WANG Hui-bin,born in 1967,Ph.D,professor,is a member of China Computer Federation.His main research interests include image processing and multi-source information fusion.
  • Supported by:
    National Natural Science Foundation of China (51709083).

摘要: 同时定位与地图构建(Simultaneous Lolalization And Mapping,SLAM)是未知环境下实现机器人自主导航的主要方法,FastSLAM是一个著名的SLAM问题解决方法。由于FastSLAM使用序贯重要性采样的方法,随着算法迭代计算,大部分粒子的权重值变得很小,只有很少粒子具有较大的权重,算法发生退化。为了使采样的粒子分布更加精确,避免粒子出现退化情况,从而进一步提高FastSLAM算法的估计精度,提出了一种基于自适应渐消无迹卡尔曼滤波(AFUKF)的快速同步定位和地图创建(FastSLAM)算法。针对FastSLAM的粒子退化问题,从研究粒子的建议分布函数出发,采用渐消无迹卡尔曼滤波(Adaptive Fading Unscented Kalman Filter,AFUKF)代替扩展卡尔曼滤波器(Extended Kalman Filter,EKF)来估计机器人位姿的建议分布函数,避免了EKF的线性化误差。同时,利用自适应渐消滤波思想产生一种参数可自适应调节的建议分布函数,使其更接近移动机器人的后验位姿概率分布,减缓粒子集的退化。在MATLAB平台上的仿真实验结果表明,所提方法的位置估计均方误差比标准FastSLAM降低了28.7%,即估计精度提升了28.7%。在与近几年相关算法的对比实验中,所提方法也取得了较高的估计精度。改变粒子数量条件进行实验时,随着粒子数量的增加,各算法的估计精度都在提升,所提算法依然取得了最好的估计精度。实验结果充分说明,提出的算法计算建议分布函数更加精确,有效缓解了FastSLAM算法中的粒子退化问题,从而显著提高了算法的估计精度。

关键词: 机器人, 建议分布函数, 粒子退化, 同步定位与地图构建, 自适应渐消无迹卡尔曼滤波

Abstract: Simultaneous localization and mapping(SLAM) is the main method to realize autonomous navigation of robots in unknown environments and FastSLAM algorithm is a popular solution to SLAM problem.Due to the sequential importance sampling method used in FastSLAM,a few of particles have a larger weight while the weight of most particles becomes very small throughout the iterative process,which leads to particle degradation.In order to make the particle distribution more accurate and reduce the particle degradation,a FastSLAM algorithm based on adaptive fading unscented Kalman filter (AFUKF) is proposed to improve the estimation accuracy of FastSLAM algorithm.To overcome the problem of particle degradation in FastSLAM,starting from the study of particle’s proposal distribution function,this paper uses adaptive fading unscented Kalman filter (AFUKF) instead of EKF to estimate the proposed distribution function of robot’s position to avoid the linearization error of EKF.With using the idea of adaptive fading filter,the proposal distribution is closer to the posterior position of the mobile robot and the particle set degradation is relieved.The simulation results on MATLAB platform show that the mean square error of position estimation of the proposed method is 28.7% lower than that of standard FastSLAM,i.e.the estimation accuracy is improved by 28.7%.And the proposed method achieves high estimation accuracy compared with the related algorithms in recent years.When increasing the increase of the number of particles,the estimation accuracy of each algorithm is improved,and the proposed algorithm still achieves the highest estimation accuracy.The experimental results fully show that the proposed algorithm can calculate the proposed distribution function more accurately and effectively alleviate the particle degradation problem in FastSLAM algorithm,which significantly improve the estimation accuracy of FastSLAM algorithm.

Key words: Adaptive fading unscented kalman filter, Particle degradation, Proposal distribution function, Robot, Simultaneous localization and mapping

中图分类号: 

  • TP242.6
[1] DURRANT-WHYTE H,BAILEY T.Simultaneous localization and mapping:part I[J].IEEE Robotics& Automation Magazine,2006,13(2):99-108.
[2] BAILEY T,DURRANT-WHYTE H.Simultaneous localization and mapping (SLAM):part II[J].IEEE Robotics & Automation Magazine,2006,13(2):108-117.
[3] KARRER M,SCHMUCK P,CHLI M.CVI-SLAM—Collaborative Visual-Inertial SLAM[J].IEEE Robotics and Automation Letters,2018,3(4):2762-2769.
[4] GOMEZ-OJED A R,ZUIGA-NOL D,MOREON F A,et al.PL-SLAM:a Stereo SLAM System through the Combination of Points and Line Segments[J].IEEE Transactions on Robotics,2019,35(3):734-746.
[5] NIU X N,LIU H Z,YUAN J Z,et al.RGB-D Indoor Location and Map Building Based on Inliers Tracking Statistics[J]. Computer Engineering,2018,44(9):15-21,27.
[6] WANG T C,CAI Y F,TANG Z M.SLAM Method Based on Region Particle Swarm Optimization and Partial Gaussian Re-sampling[J].Computer Engineering,2017,43(11):310-316.
[7] HWANG S Y,SONG J B.Monocular vision-based SLAM in indoor environment using corner,lamp,and door features from upward-looking camera[J].IEEE Transactions on Industrial Electronics,2011,58(10):4804-4812.
[8] MUNGUIA R,SARQUIS U,YOLANDA B,et al.Vision-Based SLAM System for Unmanned Aerial Vehicles[J].Sensors,2016,16(3):372.
[9] WANG H J,FU G X,LI J,et al.Strong tracking CKF based SLAM method for unmanned underwater vehicle[J].Chinese Journal of Scientific Instrument,2013,34(11):2542-2550.
[10] CASTELLANOS J,NEIRA J,TARDOS J.Limits to the consis-tency of EKF-based SLAM[J].IFAC Proceedings Volumes,2004,37(8):716-721.
[11] HUANG S,DISSANAYAKE G.Convergence and consistencyanalysis for extended Kalman filter based SLAM[J].IEEE Transactions on Robotics,2007,23(5):1036-1049.
[12] MONTEMARLO M.FastSLAM:A factored solution to thesimultaneous localization and mapping problem[C]//Procee-dings of the AAAI National Conference on Artificial Intelligence.Menlo Park:AAAI Press,2002:593-598.
[13] BAILEY T,BROOKS A.Hybrid SLAM:Combining FastSLAM and EKF-SLAM for reliable mapping[C]//Proceedings of International Workshop on Algorithmic Foundation of Robotics VIII.Berlin:Springer,2009:647-661.
[14] ZHANG L,MENG X J,CHEN Y W.Convergence and consistency analysis for FastSLAM[C]//Proceedings of the Intelligent Vehicles Symposium.Piscataway:IEEE Press:2009:447-452.
[15] KIM C,SAKTHIVEL R,CHUNG W K.Unscented Fast-SLAM:A Robust and Efficient Solution to the SLAM Problem[J].IEEE Transactions on Robotics,2008,24(4):808-820.
[16] LIU D,DUAN J M,YU H X.FastSLAM algorithm basedon adaptive fading extended Kalman filter[J].Systems Engineering and Electronics,2016,38(3):644-651.
[17] GE Q,SHAO T,CHEN S,et al.Carrier Tracking Estimation Analysis by Using the Extended Strong Tracking Filtering[J].IEEE Transactions on Industrial Electronics,2017,64(2):1415-1424.
[18] WANG X X,ZHAO L,XIA Q X,et al.Strong tracking filter based on unscented transformation[J].Control and Decision,2010,25(7):1063-1068.
[19] PAN S,LIU H G,LI N,et al.An improved FastSLAM algorithm based on quantum particle swarm optimization immune particle filter[J].Computer Simulation,2018(8):202-205.
[20] CHEN S M,LIU J K,XIAO J.Unscented FastSLAM2.0 algorithm based on gravitational field optimization[J].ControlTheo-ry and Applications,2018,35(8):139-146.
[1] 何晓, 周佳立, 吴超.
面向铣削机器人的低成本精确标定及刀路拟合方法
Low Cost Accurate Calibration and Tool Path Fitting Method for Milling Robot
计算机科学, 2022, 49(7): 187-195. https://doi.org/10.11896/jsjkx.210500135
[2] 尹宏俊, 邓楠, 程亚迪.
基于加速度模糊控制的六足机器人遥操作
Teleoperation Method for Hexapod Robot Based on Acceleration Fuzzy Control
计算机科学, 2022, 49(6A): 714-722. https://doi.org/10.11896/jsjkx.210300076
[3] 程宇, 刘铁军, 唐元贵, 王健, 姜志斌, 祁胜.
基于UNITY3D的水下机器人视景仿真方法
Underwater Robert Visual Simulation Based on UNITY3D
计算机科学, 2021, 48(6A): 281-284. https://doi.org/10.11896/jsjkx.200700131
[4] 陈镜宇, 郭志军, 尹亚昆.
基于混合算法的智能割草机全遍历路径规划及其系统设计
Full Traversal Path Planning and System Design of Intelligent Lawn Mower Based on Hybrid Algorithm
计算机科学, 2021, 48(6A): 633-637. https://doi.org/10.11896/jsjkx.201100002
[5] 吴俣, 李舟军.
检索式聊天机器人技术综述
Survey on Retrieval-based Chatbots
计算机科学, 2021, 48(12): 278-285. https://doi.org/10.11896/jsjkx.210900250
[6] 蒋化南, 张帅, 林宇斐, 李豪.
基于MPI的分布式并行Gazebo仿真优化与测试
Simulation Optimization and Testing Based on Gazebo of MPI Distributed Parallelism
计算机科学, 2021, 48(11A): 672-677. https://doi.org/10.11896/jsjkx.210100109
[7] 陈继清, 谭成志, 莫荣现, 王志奎, 吴家华, 赵超阳.
基于人工势场的A*算法的移动机器人路径规划
Path Planning of Mobile Robot with A* Algorithm Based on Artificial Potential Field
计算机科学, 2021, 48(11): 327-333. https://doi.org/10.11896/jsjkx.200900170
[8] 王梓强, 胡晓光, 李晓筱, 杜卓群.
移动机器人全局路径规划算法综述
Overview of Global Path Planning Algorithms for Mobile Robots
计算机科学, 2021, 48(10): 19-29. https://doi.org/10.11896/jsjkx.200700114
[9] 李忠发, 杨光, 马磊, 孙永奎.
变电站巡检机器人重定位研究
Research on Relocation of Substation Inspection Robot
计算机科学, 2020, 47(6A): 599-602. https://doi.org/10.11896/JsJkx.190500018
[10] 马虹.
基于5G的视觉辅助BDS移动机器人融合定位算法
Fusion Localization Algorithm of Visual Aided BDS Mobile Robot Based on 5G
计算机科学, 2020, 47(6A): 631-633. https://doi.org/10.11896/JsJkx.190400156
[11] 李虎, 方宝富.
基于积极团队情感基调的情感机器人协作任务分配拍卖算法
Emotional Robot Collaborative Task Assignment Auction Algorithm Based on Positive GroupAffective Tone
计算机科学, 2020, 47(4): 169-177. https://doi.org/10.11896/jsjkx.190900188
[12] 王伟光, 尹健, 钱祥利, 周子航.
基于动态系统的多障碍实时规避算法
Realtime Multi-obstacle Avoidance Algorithm Based on Dynamic System
计算机科学, 2020, 47(11A): 111-115. https://doi.org/10.11896/jsjkx.200800068
[13] 许锋, 孙洁, 刘世杰.
基于遗传算法的声场重构测量优化方法
Sampling Optimization Method for Acoustic Field Reconstruction Based on Genetic Algorithm
计算机科学, 2020, 47(11): 304-309. https://doi.org/10.11896/jsjkx.200600167
[14] 陈骏岭, 秦小麟, 李星罗, 周杨淏, 鲍斌国.
基于人工势场法的多机器人协同避障
Multi-robot Collaborative Obstacle Avoidance Based on Artificial Potential Field Method
计算机科学, 2020, 47(11): 220-225. https://doi.org/10.11896/jsjkx.190900026
[15] 孙明轩,翁丁恩,张钰.
有限值终态递归神经网络计算
Time-variant Neurocomputing with Finite-value Terminal Recurrent Neural Networks
计算机科学, 2020, 47(1): 212-218. https://doi.org/10.11896/jsjkx.181001898
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!