计算机科学 ›› 2021, Vol. 48 ›› Issue (11A): 319-326.doi: 10.11896/jsjkx.210700034

• 图像处理& 多媒体技术 • 上一篇    下一篇

基于LSTM神经网络的声发射信号识别研究

周俊1,2, 尹悦2, 夏斌3   

  1. 1 陆军勤务学院石油与天然气工程博士后科研流动站 重庆401331
    2 重庆市商务经济研究院 重庆401331
    3 集美大学诚毅学院 福建 厦门361021
  • 出版日期:2021-11-10 发布日期:2021-11-12
  • 通讯作者: 周俊(hgzhou2008@163.com)
  • 基金资助:
    重庆市教委科学技术研究项目 (KJZD-K201904401,KJZD-K202004401);人工智能视域下高职院校贫困学生资助工作效能提升实践研究(2020-GX-414);2021重庆市教育委员会人文社会科学研究学生资助研究项目(21skxszz01);重庆商务职业学院人工智能技术应用协同创新中心

Acoustic Emission Signal Recognition Based on Long Short Time Memory Neural Network

ZHOU Jun1,2, YIN Yue2, XIA Bin3   

  1. 1 Oil and Gas Postdoctoral Research Mobile Station,Army Service College,Chongqing 401331,China
    2 Chongqing Big Data Technology Application Research Institute of China Science and Technology,Chongqing 401331,China
    3 Chengyi University College,Jimei University,Xiamen,Fujian 361021,China
  • Online:2021-11-10 Published:2021-11-12
  • About author:ZHOU Jun,born in 1981,postdoctoral,professor level senior engineer,is a member of China Computer Federation.His main research interests include signal processing and artificial intelligence.
  • Supported by:
    Science and Technology Research Program of Chongqing Municipal Education Commission(KJZD-K201904401,KJZD-K202004401),Research on the Practice of Improving the Efficiency of Funding Work for Poor Students in Higher Vocational Colleges from the Perspective of Artificial Intelligence(2020-GX-414),2021 Chongqing Education Commission Humanities and Social Science Research Student Funding Research(21skxszz01) and Chongqing Vocational College of Commerce Artificial Intelligence Technology Application Collaborative Innovation Center Funded Project.

摘要: 声发射检测不需要进入被检对象中进行检测,与其他无损检测技术相比具有实时性、整体性和高灵敏度等独特优势。早期参数分析、小波分析等方法在声发射信号特征提取上缺乏理论指导,具有一定主观性,BP神经网络应用于声发射信号识别中时网络训练容易陷入局部极值,LSTM神经网络可以对输入序列数据进行逐层学习并自适应提取特征,避免了特征的人工选择和提取,较好地解决了存在的问题。文中提出一种基于LSTM的声发射信号识别模型,在声发射信号z-score标准化基础上,对比不同学习算法、隐层神经元数、正则化dropout rate下的测试集正确识别率,优化声发射信号识别模型,与BP神经网络的声发射信号识别准确率进行对比,实验结果表明,LSTM神经网络在Adam算法中,当隐层神经元数为250,dropout rate为0.5时,声发射信号识别率最高且为76.51%,优于BP神经网络53.9%的最高识别率。

关键词: BP神经网络, LSTM神经网络, 声发射信号, 识别

Abstract: Acoustic emission testing does not need to enter the tested object for testing,and compared with traditional nondestructive testing technology,acoustic emission testing has unique advantages such as real-time,integrity and high sensitivity.Parameter analysis and wavelet analysis methods was used in the acoustic emission signal feature extraction,which lack of theoretical guidance and certain subjectivity.The BP neural network training easy to fall into local extremum when used in the acoustic emission signal recognition,Long Short-Term Memory neural network can learn step by step input sequence data and adaptive feature extraction,avoids artificial selection and extraction of the feature.Z-score standardization was used in the acoustic emission signal,LSTM neural network uses single hidden layer structure,compare the different correct recognition rate on the test set in different situations of learning algorithm,the number of hidden layer neurons,the output neurons dropout rate,optimal model of acoustic emission signal recognition based on LSTM structure was found out.Comparing the acoustic emission signal recognition accuracy and with the BP neural network,experimental results show that the recognition rate of LSTM neural network is 76.51% under the setting of Adam algorithm,250 hidden layer neurons and 0.5 dropout rate,Compared with the highest recognition rate of 53.9% of BP neural network,the proposed algorithm has advantages.

Key words: Acoustic emission signal, BP neural network, LSTM neural network, Recognition

中图分类号: 

  • TP183
[1]FAN Z,HU M,ZHANG K,et al.A review of research on acoustic emission on-line monitoring of oil and gas pipe corrosion in acidic environments[J].Surface Technology,2019,48(4):245-252.
[2]CHI D Z,QI C C.Review of domestic research on acoustic nondestructive testing of welding defects[J].Precision Forming Engineering,2018,10(1):74-81.
[3]LIU G H.Research on key technologies of acoustic emission[D].Hangzhou:Zhejiang University,2008.
[4]SHIWA M.Recognition of rub-impact acoustic emission signal based on fuzzy entropy[J].Journal of Mechanical Engineering,2010,46(3):71-75.
[5]LIM J,MICRO K T.Cracking in stainless steel pipe detection by using acoustic emission and crest factor technique[C]//Instrumentation and Measurement Technology Conference.Warsaw,Poland,2007:1-3.
[6]MA Y H,LIU K,YANG D Z,et al.Based on typical BP network tensile acoustic emission signal feature recognition of metal specimens [J].Journal of Sichuan University (Engineering Science Edition),2011,43(2):252-255.
[7]SAUSE M G R,GRIBOV A,UNWIN A R.Pattern recognition approach to identify natural clusters of acoustic emission signals[J].Pattern Recognition Letters,2012,33(1):17-23.
[8]SUZUKI H,KINJO T,TAKEMOTO M,et al.Fracture-mode determination of glass-fiber composites by various AE processing[J].Japanese Journal of Applied Physics,1997,36(5B),3281.
[9]GANG Q,ALAN B,JAVAD H,et al.The wavelet transform in the acoustic emission signal feature extraction of the rubbing fault[C]//1st International Workshop on Database Technology and Applications,DBTA 2009.Wuhan,China,2009:283-286.
[10]CUI Y,LI X L,PENG H X,et al.Interface characterization of discontinuous reinforced metal matrix composites based on acoustic emission wavelet analysis[J].Science Bulletin,2010,43(6):656-657.
[11]FENG Z G,SUN R K,GOU J J,et al.Acoustic emission source location method based on wavelet packet analysis [J].Journal of Jiangsu University,2010,31(1):109-111.
[12]ZHANG Z,WU X Q,TAN J B.In-situ monitoring of stress corrosion cracking of 304 stainless steel in high-temperature water by analyzing acoustic emission waveform[J].Corrosion Science,2018,146:90-98.
[13]SACHES W,GRABEC I.Intelligent processing of acoustic emission signals[J].Materials Evaluation,1992,50(7):826-854.
[14]INGRAHAM M D,ISSEN K A,HOLCOMB D J.Use of acoustic emissions to investigate localization in high-porosity sandstone subjected to true triaxial stresses[J].Acta Geotechnica,1998,8(6).
[15]KOSEL T,GRABEC I,MUŽI P.Location of acoustic emission sources generated by air flow[J].Ultrasonics,2000,38(1-8):824-826.
[16]ZHAO Y X,XU Y G,GAO L X,et al.Rolling bearing acoustic emission fault pattern recognition technology based on harmonic wavelet packet and BP neural network[J].Vibration and Shock,2010,29(10):163-166.
[17]MAO H Y,CHENG J G,HUANG Z F.Extraction of characteristic parameters of acoustic emission signal of metal crack based on BP neural network [J].Mechanical Design,2010,27(2):84-86.
[18]ZHOU J,WANG Q,YI M,et al.Acoustic emission signal recognition based on wavelet transform and RBF network[J].Journal of Petrochemical College,2015,28(3):80-85.
[19]GUAN S,PANG H Y,SONG W J,et al.Tool wear status recognition based on MF-DFA features and LS-SVM algorithm[J].Transactions of the Chinese Society of Agricultural Engineering,2018,34(14):61-68.
[20]SI L,BI G H,WEI Y G,et al.Acoustic emission signal detection and recognition method based on RQA and SVM[J].Vibration and Shock,2016,35(2):97-103,123.
[21]WANG X Y,JIANG Z W,CHEN H Q,et al.Research on pipeline leak diagnosis method combining SVM and DS[J].Computer Engineering and Applications,2016,52(5):262-265,270.
[22]HU Y,LUO D Y,HUA K,et al.A review and discussion on deep learning [J].Journal of Intelligent Systems.2019,14(1):1-19.
[23]ELDAN R,SHAMIR O.The power of depth for feedforward neural networks[C]//JMLR:Workshop and Conference Proceedings.2016:1-34.
[24]HINTON G E,SALAKHUTDINOV R R.Reducing the dimensionality of data with neural networks[J].Science,2006,313(5786):504-507.
[25]HOCHREITER S,SCHMIDHUBER J.Long short-term memory [J].Neural computation,1997,9(8):1735-1780.
[26]SILVER D,HUANG A,MADDISON C J,et al.Mastering the game of Go with deep neural networks and tree search[J].Nature,2016,529(7587):484-489.
[27]ZHU Y,GAO X,ZHANG W,et al.A bi-directional LSTM-CNN model with attention for aspect-level text classification [J].Future Internet,2018,10(12):116.
[28]YIN Z K,LIAO W H,WANG R J,et al.Simulation and prediction of rainfall and runoff based on long and short-term memory neural network (LSTM)[J].South-to-North Water Diversion and Water Conservancy Science and Technology,2019,17(6):1-9,27.
[29]FISCHER T,KRAUSS C.Deep learning with long short-term memory networks for financial market predictions [J].European Journal of Operational Research,2018,270(2):654-669.
[30]ZENG W G,LI S H,LI Y,et al.Evaluation of uniform corrosion defects of oil,gas and water gathering pipelines based on radial basis function neural network prediction model[J].Corrosion and Protection,2020,41(10):50-56.
[31]ZHANG J K,ZHAO J,ZHANG R,et al.A review of image instance segmentation methods based on deep learning [J].Small Microcomputer System,2021,42(1):161-171.
[32]YAMASHITA T,ZHANG M.Graphical Deep Learning [M].Beijing:People's Posts and Telecommunications Press,2018:46-47.
[33]ZHOU J.Research on Acoustic Emission Signal Processing Algorithm Based on Machine Learning [M].Beijing:Publishing House of Electronics Industry,2020:31-32.
[34]CHOLET F.Python Deep Learning [M].Beijing:People's Posts and Telecommunications Press,2018:59-60.
[35]KINGMA D,BA J.Adam:A Method for Stochastic Optimization[J].Computer Science,2014.
[36]ZHU J Y,WANG R B,HUANG X X,et al.Multi-level metaphor recognition method based on Bi-LSTM [J].Journal of Dalian University of Technology,2020,60(2):209-215.
[37]JIANG Z L.Introduction to Artificial Neural Networks [M].Beijing:Higher Education Press,2002:32-33.
[1] 周乐员, 张剑华, 袁甜甜, 陈胜勇.
多层注意力机制融合的序列到序列中国连续手语识别和翻译
Sequence-to-Sequence Chinese Continuous Sign Language Recognition and Translation with Multi- layer Attention Mechanism Fusion
计算机科学, 2022, 49(9): 155-161. https://doi.org/10.11896/jsjkx.210800026
[2] 胡安祥, 尹小康, 朱肖雅, 刘胜利.
基于数据流特征的比较类函数识别方法
Strcmp-like Function Identification Method Based on Data Flow Feature Matching
计算机科学, 2022, 49(9): 326-332. https://doi.org/10.11896/jsjkx.220200163
[3] 陈坤峰, 潘志松, 王家宝, 施蕾, 张锦.
基于双目叠加仿生的微换衣行人再识别
Moderate Clothes-Changing Person Re-identification Based on Bionics of Binocular Summation
计算机科学, 2022, 49(8): 165-171. https://doi.org/10.11896/jsjkx.210600140
[4] 杨炳新, 郭艳蓉, 郝世杰, 洪日昌.
基于数据增广和模型集成策略的图神经网络在抑郁症识别上的应用
Application of Graph Neural Network Based on Data Augmentation and Model Ensemble in Depression Recognition
计算机科学, 2022, 49(7): 57-63. https://doi.org/10.11896/jsjkx.210800070
[5] 徐鸣珂, 张帆.
Head Fusion:一种提高语音情绪识别的准确性和鲁棒性的方法
Head Fusion:A Method to Improve Accuracy and Robustness of Speech Emotion Recognition
计算机科学, 2022, 49(7): 132-141. https://doi.org/10.11896/jsjkx.210100085
[6] 孟月波, 穆思蓉, 刘光辉, 徐胜军, 韩九强.
基于向量注意力机制GoogLeNet-GMP的行人重识别方法
Person Re-identification Method Based on GoogLeNet-GMP Based on Vector Attention Mechanism
计算机科学, 2022, 49(7): 142-147. https://doi.org/10.11896/jsjkx.210600198
[7] 苏丹宁, 曹桂涛, 王燕楠, 王宏, 任赫.
小样本雷达辐射源识别的深度学习方法综述
Survey of Deep Learning for Radar Emitter Identification Based on Small Sample
计算机科学, 2022, 49(7): 226-235. https://doi.org/10.11896/jsjkx.210600138
[8] 费星瑞, 谢逸.
基于HMM-NN的用户点击流识别
Click Streams Recognition for Web Users Based on HMM-NN
计算机科学, 2022, 49(7): 340-349. https://doi.org/10.11896/jsjkx.210600127
[9] 高荣华, 白强, 王荣, 吴华瑞, 孙想.
改进注意力机制的多叉树网络多作物早期病害识别方法
Multi-tree Network Multi-crop Early Disease Recognition Method Based on Improved Attention Mechanism
计算机科学, 2022, 49(6A): 363-369. https://doi.org/10.11896/jsjkx.210500044
[10] 张嘉淏, 刘峰, 齐佳音.
一种基于Bottleneck Transformer的轻量级微表情识别架构
Lightweight Micro-expression Recognition Architecture Based on Bottleneck Transformer
计算机科学, 2022, 49(6A): 370-377. https://doi.org/10.11896/jsjkx.210500023
[11] 肖治鸿, 韩晔彤, 邹永攀.
基于多源数据和逻辑推理的行为识别技术研究
Study on Activity Recognition Based on Multi-source Data and Logical Reasoning
计算机科学, 2022, 49(6A): 397-406. https://doi.org/10.11896/jsjkx.210300270
[12] 黄璞, 杜旭然, 沈阳阳, 杨章静.
基于局部正则二次线性重构表示的人脸识别
Face Recognition Based on Locality Regularized Double Linear Reconstruction Representation
计算机科学, 2022, 49(6A): 407-411. https://doi.org/10.11896/jsjkx.210700018
[13] 王建明, 陈响育, 杨自忠, 史晨阳, 张宇航, 钱正坤.
不同数据增强方法对模型识别精度的影响
Influence of Different Data Augmentation Methods on Model Recognition Accuracy
计算机科学, 2022, 49(6A): 418-423. https://doi.org/10.11896/jsjkx.210700210
[14] 黄璞, 沈阳阳, 杜旭然, 杨章静.
基于局部约束特征线表示的人脸识别
Face Recognition Based on Locality Constrained Feature Line Representation
计算机科学, 2022, 49(6A): 429-433. https://doi.org/10.11896/jsjkx.210300169
[15] 刘伟业, 鲁慧民, 李玉鹏, 马宁.
指静脉识别技术研究综述
Survey on Finger Vein Recognition Research
计算机科学, 2022, 49(6A): 1-11. https://doi.org/10.11896/jsjkx.210400056
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!