计算机科学 ›› 2021, Vol. 48 ›› Issue (12): 195-203.doi: 10.11896/jsjkx.210400022

• 数据库&大数据&数据科学 • 上一篇    下一篇

基于3D卷积和LSTM编码解码的出行需求预测

滕建, 滕飞, 李天瑞   

  1. 西南交通大学计算机与人工智能学院 成都611756
    综合交通大数据应用技术国家工程实验室 成都611756
  • 收稿日期:2021-04-01 修回日期:2021-07-17 出版日期:2021-12-15 发布日期:2021-11-26
  • 通讯作者: 李天瑞(trli@swjtu.edu.cn)
  • 作者简介:TJ950@my.swjtu.edu.cn
  • 基金资助:
    国家重点研发计划项目(2019YFB2101802);四川省重点研发项目(2021YFG0312)

Travel Demand Forecasting Based on 3D Convolution and LSTM Encoder-Decoder

TENG Jian, TENG Fei, LI Tian-rui   

  1. School of Computing and Artificial Intelligence,Southwest Jiaotong University,Chengdu 611756,China
    National Engineering Laboratory of Integrated Transportation Big Data Application Technology,Chengdu 611756,China
  • Received:2021-04-01 Revised:2021-07-17 Online:2021-12-15 Published:2021-11-26
  • About author:TENG Jian,born in 1996,postgraduate.His main research interests include big data and urban computing.
    LI Tian-rui,born in 1969,professor,is a fellow of IRSS and senior member of China Computer Federation,ACM and IEEE.His main research interests include big data,data mining,granular computing and rough sets.
  • Supported by:
    National Key R & D Program of China (2019YFB2101802) and Key R & D Project of Sichuan Province (2021YFG0312).

摘要: 可靠的区域出行需求预测能够为交通资源的调度和规划提供合理有效的建议。但是,出行预测是一个非常具有挑战性的问题,面临海量的时空大数据建模问题,如何有效地提取时空大数据中的空间特征和时间特征,成为当前城市计算的研究热点。文中提出了一种基于3D卷积和编码-解码注意力机制的需求预测模型(3D Convolution and Encoder-Decoder Attention Demand Forecasting,3D-EDADF),用于同时预测城市区域的出行需求流入量和流出量。3D-EDADF模型首先利用3D卷积来提取时空数据的时空相关性,然后使用LSTM编码解码来对时间依赖性进行捕获,并结合注意力机制来描述流入流出的差异性。3D-EDADF模型对临近依赖性、日常依赖性和周期依赖性这3种时间依赖特征进行混合建模,然后将它们的多维特征进行加权融合得到最终的预测结果。采用真实的出行需求数据集进行了大量的实验,结果表明,与基准模型相比,3D-EDADF模型的整体预测误差较低,具有较好的预测性能。

关键词: 3D卷积, 编码-解码, 出行需求预测, 时空大数据, 注意力机制

Abstract: Reliable regional travel demand forecasting can provide reasonable and effective suggestions for the scheduling and planning of traffic resources.However,travel forecasting is a very challenging problem,facing massive spatial-temporal big data modeling problem.And how to extract the spatial and temporal features of the data effectively has become a research hotspot of urban computing.This paper proposes a demand forecasting model based on 3D deconvolution and encoder-decoder attention mechanism (in short 3D-EDADF),which is used to predict the inflow and outflow of travel demand in urban areas at the same time.3D-EDADF model first uses 3D convolution to extract spatial-temporal correlation of data,then uses LSTM encoder-decoder to capture temporal dependence,and combines attention mechanism to describe the difference of inflow and outflow.3D-EDADF model conducts hybrid modeling on the three time-dependent features of closeness dependency,daily dependency and periodic dependency,and then weights and fuses their multi-dimensional features to obtain the final prediction result.The experiments are carried out by using real travel demand data sets.The results show that compared with baseline models,the 3D-EDADF model has the lowest overall prediction error and has better prediction performance.

Key words: 3D convolution, Attention mechanism, Encoder-decoder, Spatial-temporal big data, Travel demand prediction

中图分类号: 

  • TP181
[1]YAO H,WU F,KE J,et al.Deep multi-view spatial-temporal network for taxi demand prediction[C]//2018 32nd AAAI Conference on Artificial Intelligence,AAAI.2018:2588-2595.
[2]CHU K F,LAM A Y S,LI V O K.Travel demand prediction using deep multi-scale convolutional LSTM network[C]//2018 21st International Conference on Intelligent Transportation Systems (ITSC).IEEE,2018:1402-1407.
[3]MACIEJEWSKI M,BISCHOFF J,NAGEL K.An assignment-based approach to efficient real-time city-scale taxi dispatching[J].IEEE Intelligent Systems,2016,31(1):68-77.
[4]WANG D,YANG Y,NING S.Deepstcl:A deep spatio-temporal convlstm for travel demand prediction[C]//2018 International Joint Conference on Neural Networks(IJCNN).IEEE,2018:1-8.
[5]YANG G F,XU R,QIN M,et al.Short-term traffic volume forecasting based on ARMA and Kalman filter[J].Journal of Zhengzhou University(Engineering Edition),2017,38(2):36-40.
[6]KANCHYMALAY K,SALIM N,SUKPRASERT A,et al. Multivariate time series forecasting of crude palm oil price using machine learning techniques[C]//IOP Conference Series:Materials Science and Engineering.IOP Publishing,2017,226(1):012117.
[7]LU J Z,CHENG H.Short-term traffic flow forecast based on modified GA optimized BP neural network [J].Journal of Hefei University of Technology (Natural Science Edition),2015,38(1):127-131.
[8]TEDJOPURNOMO D A,BAO Z,ZHENG B,et al.A Survey on Modern Deep Neural Network for Traffic Prediction:Trends,Methods and Challenges[J/OL].IEEE Transactions on Know-ledge and Data Engineering,2020,https://ieeexplore.ieee.org/document/9112608.
[9]LECUN Y,BENGIO Y,HINTON G.Deep learning[J].Nature,2015,521(7553):436-444.
[10]KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Imagenet classification with deep convolutional neural networks[J].Communications of the ACM,2017,60(6):84-90.
[11]KARPATHY A,FEI-FEI L.Deep visual-semantic alignments for generatingimage descriptions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2015:3128-3137.
[12]CHO K,VAN MERRIENBOER B,GULCEHRE C,et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[J].arXiv:1406.1078,2014.
[13]SCHIMBINSCHI F,NGUYEN X V,BAILEY J,et al.Traffic forecasting in complex urban networks:Leveraging big data and machine learning[C]//2015 IEEE International Conference on Big Data.IEEE,2015:1019-1024.
[14]HABTEMICHAEL F G,CETIN M.Short-term traffic flow rate forecasting based on identifying similar traffic patterns[J].Transportation Research Part C:Emerging Technologies,2016,66:61-78.
[15]QIAN X,UKKUSURI S V,YANG C,et al.A model for short-term taxi demand forecasting accounting for spatio-temporal correlations[R].Transportation Research Board 96th Annual Meeting,2017.
[16]SAADI I,WONG M,FAROOQ B,et al.An investigation into machine learning approaches for forecasting spatio-temporal demand in ride-hailing service[J].arXiv:1703.02433,2017.
[17]ZHANG X,HUANG C,XU Y,et al.Spatial-Temporal Convolutional Graph Attention Networks for Citywide Traffic Flow Forecasting[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management.2020:1853-1862.
[18]CHEN X,XIE X,TENG D.Short-term Traffic Flow Prediction Based on ConvLSTM Model[C]//2020 IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC).IEEE,2020:846-850.
[19]REN Y,ZHAO D,LUO D,et al.Global-Local Temporal Convolutional Network for Traffic Flow Prediction[J/OL].IEEE Transactions on Intelligent Transportation Systems,2020.https://ieeexplore.ieee.org/document/9216498.
[20]GUO S,LIN Y,LI S,et al.Deep spatial-temporal 3D convolutional neural networks for traffic data forecasting[J].IEEE Transactions on Intelligent Transportation Systems,2019,20(10):3913-3926.
[21]GAO K,LI D,CHEN L,et al.Incorporating intra-flow depen- dencies and inter-flow correlations for traffic matrix prediction[C]//2020 IEEE/ACM 28th International Symposium on Qua-lity of Service (IWQoS).IEEE,2020:1-10.
[22]DU S D,LI T R,YANG Y,et al.An Sequence-to-Sequence Spatial-Temporal Attention Learning Model for Urban Traffic Flow Prediction [J].Journal of Computer Research and Development,2020,57(8):1715-1728.
[23]CHEN Y,ZOU X,LI K,et al.Multiple local 3D CNNs for region-based prediction in smart cities[J].Information Sciences,2021,542:476-491.
[24]ZHOU Y,LI J,CHEN H,et al.A spatiotemporal hierarchical attention mechanism-based model for multi-stepstation-level crowd flow prediction[J].Information Sciences,2021,544:308-324.
[25]DAI G,MA C,XU X.Short-term traffic flow prediction method for urban road sections based on space-time analysis and GRU[J].IEEE Access,2019,7:143025-143035.
[26]ZHOU W,YANG Y,ZHANG Y,et al.Deep Flexible Structured Spatial-Temporal Model for Taxi Capacity Prediction[J].Knowledge-Based Systems,2020,205:106286.
[27]ZHANG J B,ZHENG Y,SUN J K,et al.Flow Prediction in Spatio-Temporal Networks Based on Multitask Deep Learning[J].IEEE Transactions on Knowledge and Data Engineering,2019,32 (3):468-478.
[28]XU L H,GUO Y T.Short-term Forecasting Model of Demand for Network Booking Taxi Based on GWO-LSTM [J].Automation and Instrumentation,2020,35(5):86-90.
[29]MADAN R,MANGIPUDI P S.Predicting computer network traffic:a time series forecasting approach using DWT,ARIMA and RNN[C]//2018 Eleventh International Conference on Contemporary Computing (IC3).IEEE,2018:1-5.
[30]WANG Y,ZHU S,LI C.Research on Multistep Time Series Prediction Based on LSTM[C]//2019 3rd International Confe-rence on Electronic Information Technology and Computer Engineering (EITCE).IEEE,2019:1155-1159.
[1] 饶志双, 贾真, 张凡, 李天瑞.
基于Key-Value关联记忆网络的知识图谱问答方法
Key-Value Relational Memory Networks for Question Answering over Knowledge Graph
计算机科学, 2022, 49(9): 202-207. https://doi.org/10.11896/jsjkx.220300277
[2] 周芳泉, 成卫青.
基于全局增强图神经网络的序列推荐
Sequence Recommendation Based on Global Enhanced Graph Neural Network
计算机科学, 2022, 49(9): 55-63. https://doi.org/10.11896/jsjkx.210700085
[3] 戴禹, 许林峰.
基于文本行匹配的跨图文本阅读方法
Cross-image Text Reading Method Based on Text Line Matching
计算机科学, 2022, 49(9): 139-145. https://doi.org/10.11896/jsjkx.220600032
[4] 周乐员, 张剑华, 袁甜甜, 陈胜勇.
多层注意力机制融合的序列到序列中国连续手语识别和翻译
Sequence-to-Sequence Chinese Continuous Sign Language Recognition and Translation with Multi- layer Attention Mechanism Fusion
计算机科学, 2022, 49(9): 155-161. https://doi.org/10.11896/jsjkx.210800026
[5] 熊丽琴, 曹雷, 赖俊, 陈希亮.
基于值分解的多智能体深度强化学习综述
Overview of Multi-agent Deep Reinforcement Learning Based on Value Factorization
计算机科学, 2022, 49(9): 172-182. https://doi.org/10.11896/jsjkx.210800112
[6] 姜梦函, 李邵梅, 郑洪浩, 张建朋.
基于改进位置编码的谣言检测模型
Rumor Detection Model Based on Improved Position Embedding
计算机科学, 2022, 49(8): 330-335. https://doi.org/10.11896/jsjkx.210600046
[7] 朱承璋, 黄嘉儿, 肖亚龙, 王晗, 邹北骥.
基于注意力机制的医学影像深度哈希检索算法
Deep Hash Retrieval Algorithm for Medical Images Based on Attention Mechanism
计算机科学, 2022, 49(8): 113-119. https://doi.org/10.11896/jsjkx.210700153
[8] 孙奇, 吉根林, 张杰.
基于非局部注意力生成对抗网络的视频异常事件检测方法
Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection
计算机科学, 2022, 49(8): 172-177. https://doi.org/10.11896/jsjkx.210600061
[9] 闫佳丹, 贾彩燕.
基于双图神经网络信息融合的文本分类方法
Text Classification Method Based on Information Fusion of Dual-graph Neural Network
计算机科学, 2022, 49(8): 230-236. https://doi.org/10.11896/jsjkx.210600042
[10] 汪鸣, 彭舰, 黄飞虎.
基于多时间尺度时空图网络的交通流量预测模型
Multi-time Scale Spatial-Temporal Graph Neural Network for Traffic Flow Prediction
计算机科学, 2022, 49(8): 40-48. https://doi.org/10.11896/jsjkx.220100188
[11] 金方焱, 王秀利.
融合RACNN和BiLSTM的金融领域事件隐式因果关系抽取
Implicit Causality Extraction of Financial Events Integrating RACNN and BiLSTM
计算机科学, 2022, 49(7): 179-186. https://doi.org/10.11896/jsjkx.210500190
[12] 熊罗庚, 郑尚, 邹海涛, 于化龙, 高尚.
融合双向门控循环单元和注意力机制的软件自承认技术债识别方法
Software Self-admitted Technical Debt Identification with Bidirectional Gate Recurrent Unit and Attention Mechanism
计算机科学, 2022, 49(7): 212-219. https://doi.org/10.11896/jsjkx.210500075
[13] 彭双, 伍江江, 陈浩, 杜春, 李军.
基于注意力神经网络的对地观测卫星星上自主任务规划方法
Satellite Onboard Observation Task Planning Based on Attention Neural Network
计算机科学, 2022, 49(7): 242-247. https://doi.org/10.11896/jsjkx.210500093
[14] 张颖涛, 张杰, 张睿, 张文强.
全局信息引导的真实图像风格迁移
Photorealistic Style Transfer Guided by Global Information
计算机科学, 2022, 49(7): 100-105. https://doi.org/10.11896/jsjkx.210600036
[15] 曾志贤, 曹建军, 翁年凤, 蒋国权, 徐滨.
基于注意力机制的细粒度语义关联视频-文本跨模态实体分辨
Fine-grained Semantic Association Video-Text Cross-modal Entity Resolution Based on Attention Mechanism
计算机科学, 2022, 49(7): 106-112. https://doi.org/10.11896/jsjkx.210500224
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!