一种提高恒星光谱识别率的新方法*⁾

白凌郭平

(北京师范大学计算机科学系 北京 100875)

摘 要 本文提出的方法是基于 Kalman 滤波和径向基函数神经网络的,是对提高恒星光谱识别率的深入研究。 它不再依赖分类正确率曲线选取特征,可以直接将 Kalman 滤波的输出作为径向基函数神经网络的输入。该技术 分为两个阶段:第一阶段,采用 Kalman 滤波对经过归一化的光谱数据进行去嗓、降维,同时进行第一次的分类;第 二阶段,利用径向基函数神经网络进行第二次的分类。实验表明这种新技术是健壮的、高效率的、通用性强的。该 方法的分类结果比主成分分析的最好结果还要好。

关键词 Kalman 滤波,径向基函数神经网络,主成分分析,恒星光谱

1 引言

在对光谱的研究当中,对光谱数据进行分类是 一大难题。光谱识别通常是利用光谱线的波长、强 度和谱线宽度等特征信息进行识别。识别方法一般 是采用分类技术,将待识别光谱与已知的模板光谱 匹配,从而将待识别光谱划分到相应的类别上。在 实际中由于获取光谱时的测量误差,噪声干扰,识别 技术的限制,使得待测光谱与模板很难匹配准确,造 成光谱识别率较低。针对这些问题,本文主要讨论 从分类技术方面去改进。

恒星光谱数据都是多维的,且是多噪声的,因此 要对恒星光谱数据进行分类,所采用的方法就要能 够高效地进行计算并能够有效地去除噪声。传统的 多参数分类方法,如线性甄别分析(Linear Discriminant Analysis - LDA)、二次甄别分析 (Quadratic Discriminant Analysis - QDA)由于数据 奇异性的问题都不能直接用于这种病态数据。主成 分分析(Principle Component Analysis - PCA)^[1]技 术往往直接被用来对这些病态数据进行特征提取。 将样本投影到低维空间上,同时尽量保留主要分量, 最大限度地保留有用信息,这样提取出来的特征数 就会低于样本数^[2]。另外一个可以用来解决这种 奇异问题的方法就是采用 Kalman 滤波^[3]。Kalman 滤波是一种线性滤波情况下的最小均方误差估计 法。它在一个独立的矩阵(光谱数据)和一个非独立 的矩阵(类别标号)之间建立一个线性的模型,

Y = X * B + Error(1)

而 B 矩阵是由最小均方误差估计法来估计的。 径向基函数神经网络(Radial Basis Function – RBF)是一种前馈型三层神经网络,借助其所具有的 非线性模型的能力与局域化的特点,将特征光谱与 类别之间建立非线性映射关系来实现识别的功能。

2 背景

2.1 预处理技术

实验 所采 用 的 数 据 是 从 天 文 数 据 中 心 (Astronomical Data Centre)中选取的。其中包括 Jacoby(1984)中的 161 条光谱数据和 Pickles(1985) 中的 96 条光谱数据,它们的分辨率分别是 0.14nm 和 1.2nm。这三组数据经过线性插值统一波段范 围为 360~742nm,分辨率为 0.5nm。

由于所选数据来自两个库中,观察的时间、环 境、噪声均不一样,因此在分类之前先对数据进行了 归一化处理。

2.2 Kalman 滤波

Kalman 滤波最先是由 R.E.Kalman 提出来用 于处理卫星轨道数据问题的^[4]。

在式 1 中,我们建立了一个线性模型。其中 $X_{m\times n}$ 是一个有 m 个物体和 n 维参数的光谱数据样 本,而 $Y_{m\times p}$ 是一个有 m 个物体和 p 类的类别标号 矩阵。 $B_{n\times p}$ 是一个有 p 列的 b – 系数矩阵。在 Kalman 滤波中,B 矩阵和它的协方差矩阵 $P_{n\times n}$ 是通 过下面的公式迭代算出的^[5]。

$$B(k) = B(k-1) + K(k)[Y(k) - X(k)B(k-1)] (2)$$

$$P(k) = [I - K(k)X(k)]P(k-1)[I - K(k)X(k)] + K(k)r(k)K'(k)$$
(3)
$$K(k) = P(k-1)X'(k)[X(k)P(k-1)X'(k) + r(k)]^{-1}$$
(4)

其中,n是系统中数据的维数;m是物体的数量;k = 1,2,…,m是测量物体的索引,表明现在正在对哪 个物体进行处理;B(k)是系统状态矩阵;Y(k)是类 别标号矩阵(第 k 个物体的类别编号);X (k)是测量矩阵(第 k 个物体的光谱);K(k)是

^{*)}国家自然科学基金(60275002)和国家 863 计划(2003AA133060)资助课题。

Kalman 滤波获得的增益矩阵; P(k) 是系统的协方 差矩阵; r(k) 是测量过程中的噪声值。

为了能够应用 Kalman 滤波,r(k)的值必须在 一开始就给定。我们使用一个很小的测量值 2.5× 10⁻⁹作为它的初始值。当我们给 B 矩阵和 P 矩阵 赋以不同的初始值时,Kalman 滤波的结果是相对稳 定的,因为我们所建立的是一个线性的模型。在这 次讨论中,我们先用零矩阵作为 B 矩阵的初始值而 单位矩阵作为 P 矩阵的初始值。对于每一个样本 k,B 矩阵、P 矩阵及向量 K 都是根据输入的第 k 个 样本的数据由式(2~4)来更新的。

2.3 RBF 神经网络

RBF 神经网络由三层组成,输入层节点只是传 递输入信号到隐层,隐层节点(亦称 RBF 节点)由激 励函数构成,而输出层节点通常是简单的线性函数。

径向基函数是以一个基函数作为一个神经元函 数而以参数 ₩ 作为权值的。

RBF 神经网络的输出为隐层节点输出的线性 组合,即^[6]:

$$Z_{k}(\mathbf{x}) = \sum_{j=1}^{H} w_{kj} \varphi_{j}(\|\mathbf{x} - \mu_{j}\|) + w_{k0}$$
$$= \sum_{i=0}^{H} w_{kj} \varphi_{j}(\|\mathbf{x} - \mu_{j}\|) \rightleftharpoons Z(\mathbf{x}) = W \varphi(\mathbf{x})$$
(5)

其中 w_{k0} 是偏置常数, $\varphi(\|\mathbf{x} - \mu_j\|) = 1$,权值矩阵 W 可以被初始化为 W = t^{-T} ϕ^{-1} , t^{-T}是相应的目标 向量, 而 ϕ 是对称矩阵。

 $\boldsymbol{\phi} = \begin{pmatrix} \boldsymbol{\phi}(\parallel \mathbf{x}_1 - \boldsymbol{\mu}_1 \parallel) \cdots \boldsymbol{\phi}(\parallel \mathbf{x}_m - \boldsymbol{\mu}_1 \parallel) \\ \vdots & \ddots & \vdots \\ \boldsymbol{\phi}(\parallel \mathbf{x}_1 - \boldsymbol{\mu}_p \parallel) \cdots \boldsymbol{\phi}(\parallel \mathbf{x}_m - \boldsymbol{\mu}_p \parallel) \end{pmatrix}$

虽然有各种各样的基函数,本文中选择基函数 ♦为高斯型:

$$\varphi_{j}(\| \mathbf{x} - \mu_{j} \|) = \exp[-\frac{1}{2r_{j}^{2}} \| \mathbf{x} - \mu_{j} \|^{2}]$$
 (6)

其中,φ_j是第 j 个隐层节点的输出, x 是输入样本,μ_j 是高斯函数的中心值, γ_j 是标准化常数。每个基函 数的 μ_j 和 γ_j 都可以不同, 而矩阵 W 包含了权值和 位移的信息。由式(6)可以看出, 节点的输出范围在 0和1之间, 且输入样本愈靠近节点的中心, 输出值 愈大。

3 实验

按照温度由高到低,一共有七种主要的恒星光 诸数据,它们分别是 O、B、A、F、C、K 和 M。七种主 要的光谱型见图 1,具体描述见文[7]。

实验所采用的数据共有 257 个样本,每个样本 的维数均为 765,即 m = 257, n = 765。其中,0 类数 据共 21 条,B 类数据共 43 条,A 类数据共 33 条,F 类数据共 39 条,C 类数据共 47 条,K 类数据共 42 条,M 类数据共 32 条。我们采用交叉检验技术来 进行实验,也就是说从每一类中随机选取 16 个样本,每次选取其中的 15 个作为训练样本,剩下的一个作为检验样本,然后计算出平均的分类正确率 (Correct Classification Rate - CCR)。

图 1 七类典型的恒星光谱

首先进行归一化处理,实验中我们采取的办法 是对每一类数据分别进行归一化,这是因为我们认 为同一类数据在实验中的表现是相似的。

然后,采用 Kalman 滤波技术对光谱数据进行 去噪降维^[5]。图2显示了去噪效果。从图中可以看 出,光谱曲线更加光滑,并且保留了数据的尖峰。 Kalman 滤波在一定程度上可以很好地去噪。

Kalman 滤波结果(上面一根是滤波前的光谱线, 下面的一根是滤波后的光谱线)

最后,将 Kalman 滤波的结果 Y = X * B 作为 输入送入 RBF 神经网络,进行分类。在 RBF 神经 网络中,我们使用了 21 个基函数,选择了训练样本 的 5 个不同的 γ 值。对于输出向量 z,我们采用 one - of - k 编码方式。

由于这组数据的噪声比较大,采用我们的新技 术能达到的平均 CCR 为 0.91。

在所实验中,开始选取零矩阵作为 B 矩阵的初 始矩阵。实验证明,当选取不同的初始值作为 B 矩 阵的初始矩阵时,分类结果都是相对稳定的,这是因 为我们建立的是一个线性模型。

RBF 网络的结果对分类结果的影响是很大的。 当选取不同的神经元个数时, RBF 所得到的分类结 果是很不同的。如果神经元个数选取合适, 可以大 大地提高分类结果。在实验中, 我们也选取了 70 个 神经元结构的 RBF 网络, 它所能达到的平均 CCR

· 60 ·

为0.69。当采用过多的神经元个数时,会产生过度 拟合的现象。

图 3 Kalman 滤波在 Y - 空间的三维分布

在文[9]中,所采用的方法是将 Y = X * B * B^T 作为输入送入径向基函数神经网络,然后依据 CCR 曲线选取最佳特征数。对于这组数据,它所能达到 的分类正确率为 0.87。

根据式(1)中的线性模型,我们估计了 Kalman 滤波的输出。图 3 显示了它的三维输出。从图中可 以看出,七类数据大致可以分开,再经过 RBF 网络 进行分类,应该能得出较好的分类结果。

图 4 PCA 三主分量的空间分布

主成分分析(PCA)作为一种降低数据维数的技术可以直接作用于这种病态的问题。作为和Kalman 滤波提取特征的比较,本文也采用了PCA的方法提取出主分量^[1],对原始数据进行降维。实验表明,它所能达到的CCR 仅为0.71。由于PCA只是对线性可分的数据才能产生较好的结果,且PCA 技术不具备滤噪的性能。

图 4 显示了 PCA 三主分量后的结果。比起 Kalman 滤波后的结果就要差很多。

表1给出了各种方法 CCR 的比较。

表1 各方法 CCR 比较

方法	CCR
新方法(21 神经元)	0.91
新方法(70神经元)	0.69
原方法(21 神经元)	0.87
PCA	0.71

结论 本文将由 Kalman 滤波和 RBF 神经网络 组成的自动识别技术应用于恒星光谱的识别。我们 所提出的这个新技术中, Kalman 滤波是作为一个去 噪声和特征提取的预处理器, 再结合 RBF 神经网络 给出了相当好的结果。分类结果比使用 PCA 降维, 再用 RBF 网络分类效果要好得多。

参考文献

- 1 Jolliffe I T. Principal Component Analysis. New York, Springer - Verlag, 1986
- 2 Martens H, Naes T. Multivariate Calibration. New York : Wiley, 1991
- 3 Rutan S C. Fast On line Digital Filtering. Chemometrics Intell. Lab. Systems, 1989, 6:191 ~ 201
- 4 Rutan S C, Brown S D. Model Error Compensation in Multi - Component Analysis Using Adaptive Kalman Filtering. Anal. Chim. Acta, 1984, 160:99 ~ 119
- 5 Wu W, Rutan S C, Baldovin A. Feature Selection using the Kalman Filter for Classification of Multivariate Data. Analytica Chimica Acta, 1996, 335:11 ~ 22
- 6 Bishop C M. Neural Networks for Pattern Recognition. Oxford: Oxford University Press, 1995
- 7 Qin D M, Guo P, Hu Z Y, Zhao Y H. Automated Separation of Stars and Normal Galaxies Based on Statistical Mixture Modeling with RBF Neural Networks. Chin. J. Astron. Astrophys, 2003, 3:277 ~ 286
- 8 Bai Ling, Li ZhenBo, Guo Ping. Classification of Stellar Spectral Data Based on Kalman Filter and RBF Neural Networks. In: IEEE Int Conf. on System, Man and Cybernetics, Washington DC, 2003.274 ~ 279