基于迭代的非刚性点阵配准算法

周红玉, 杨洋, 张佛
(云南师范大学信息学院 昆明 650092)
(西部资源环境地理信息技术教育部工程研究中心 昆明 650092)

摘要 提出的非刚性点阵配准算法, 具有鲁棒性全局和局部多特征用于对应关系检测, 并结合高斯混合模型进行空间变换更新。首先, 定义两个特征点集, 分别对应两个点阵间的全局和局部结构差异, 这两个特征形成了一种基于能量优化方程的多特征, 通过最小化此多特征, 可以搜索到匹配点阵间的对应关系。其次, 设计一种基于高斯混合模型的空间变换能量方程, 同时借助 L_2 距离最小化方法将最小化, 以此改善空间变换更新。最后, 接受能量配准和图像特征点配准测试了算法的性能, 并与其它 4 种先进方法进行了对比, 该算法在大部分实验中展现了最好的配准效果。

关键词 非刚性点阵配准, 多特征, 对应关系检测, 高斯混合模型, 空间变换更新

中国分类号 TP391.4 文献标识码 A

Non-rigid Point Set Registration Algorithm Based on Iteration

ZHOU Hong-yu1 YANG Yang2* ZHANG Fu1
(School of Information Science and Technology, Yunnan Normal University, Kunming 650092, China)
(Western Resources Environment Geographic Information Technology Engineering Research Center of the Ministry of Education, Kunming 650092, China)

Abstract We proposed a non-rigid point set registration algorithm. It uses a robustly global and local multi-feature for correspondence estimating, and combined with the Gaussian mixture model for transformation updating. Firstly, to measure global and local structural diversities, we introduced two distance features, among two point sets, respectively. Then, the two features formed a multi-feature based cost matrix. It provides a flexible approach to estimate correspondences by minimizing the global or local structural diversities. Finally, we designed a Gaussian mixture model based energy function for refining the transformation updating, and it was minimized by the L_2 distance minimization. By contour registration, sequence and real images, we tested the performance of the algorithm and compared against four state-of-the-art methods. This algorithm shows the best alignments in all most of the experiments.

Keywords Non-rigid point set registration, Multi-feature, Correspondence estimating, Gaussian mixture model, Transformation updating

1 引言

非刚性配准技术作为图像处理的一个重要环节, 被广泛应用于计算机视觉, 机器学习, 医学影像, 模式识别以及地理信息系统等很多领域。它的作用就是把一个点阵称为源点阵, 针对另外一个预先发生形变的点阵, 称为目标点阵, 进行配准。据文献记载, 主要存在两类非刚性点阵配准方法, 一种是迭代与非迭代方法, 另一种是学习与非学习方法。本文主要基于第一种分类对非刚性点阵配准方法进行介绍和讨论。

非迭代方法是采用单一的积分方式变换。两个点阵之间的对应关系检测使用的是骨架结构特征, 如比值线, 直线, 曲线, 面, Shape Context 以及图像。在以上提到的这些特征中, Shape Context 和图像最受欢迎的两个几何结构特征, 运用 Shape Context 和图像特征方法是试图最小化两个点阵之间的点分布差异和图像轮廓差异来获取对应关系, 在处理非刚性点阵配准问题和改善配准性能方面, 参数学习方法具有重要作用, 但最近很少有相关文献发表。

迭代方法主要涉及一个交替的两步过程, (1) 对应关系评估, (2) 空间变换更新。不同于非迭代方法, 迭代方法能够逐渐调整源点阵的几何结构和位置, 使源点阵变得更接近于目标点阵, 那么两个点阵间的对应关系评估也就随之变得相对简单, 为了处理非刚性点阵配准存在的问题, Chui 和 Ramesh 在匹配算法 (TPS-RPM) 中首次引入了这种交替的两步过程, 采用了极配对 (2.6) 和稳定性标志技术 (4.6) 进行对应关

周红玉(19...), 女, 硕士生, 主要研究方向为非刚性点阵配准。E-mail: saydayyuno-1314@163.com, 杨洋 (198...), 男, 博士, 讲师, 主要研究方向为医学图像处理, 图像配准, 地理信息系统, 人体组织系统, (通信作者), 张佛 (198...), 男, 硕士生, 主要研究方向为图像配准基础算法。
系评估，同时控制基于薄板样条函数的空域变换更新。Myronenko等[[1]]提出一种带有一致性约束的极大-极小估计算法，该方法保留了拓扑结构。随后，Myronenko和Song[[2]]（CPD）提出刚性和非刚性配准改进了光子的算法[[3]]，并用于快速高斯变换[[4]]和低频矩近似方法[[5]]获得高解配准。最近，Jian和Vemuri[[6]]（GMKREG）介绍了一种高斯混合模型方法，他们把对应关系评估看作是两个高斯混合模型（GMM）之间的投影，并证明最小化两个模型间的L2距离[[7]]进行空间变换更新，周志勇等[[8]]将GMM推广为1分布混合模型并构造了高斯局部空间约束性质的Dirichlet分布参数来减少异常点和重尾点的影响而提高算法的鲁棒性。近期，Ma等[[9]]先介绍Shape Context特征建立两个点阵间粗略的对应关系，后基于贝叶斯模型对关系评估进行了改进，并使用一种鲁棒性L2P评估函数[[10]]估算空间变换。祝维华等[[11]]提出了一种适用于二维/三维点集的高斯最近邻搜索方法为使用距离特征提供非刚性点配准的算法提高最近邻搜索效率。Wang等[[12]]也基于非刚性点阵配准方法描述了一种非对称高斯表示，利用非刚性同高斯模型中点集的非对称空间分布，作为评估两个点阵之间对应关系的一个特征描述图。

本文介绍一种采用多特征和高斯混合模型的鲁棒性非刚性点阵配准算法。本文第2节介绍所提算法的主要思想，第3节分别对评估方法性能，然后与其他先进方法作比较，最后进行讨论总结。

2 方法

设\((a_i, i=1,2,...,A)\)和\((b_j, j=1,2,...,B)\)，定义在\(R^*\)或者\(R^A\)数据空间下，分别作为源点集\(a_i\)和目标点集\(b_j\)。本文所提方法的主要过程分为：(1) 在每次迭代中使用形变模板\(a^*\)（初始\(a^* = a\)）评估，\(a^*\)中的当前对齐\(b^*\)（2）基于重现的\(a^*\)和\(b^*\)之间的对应关系更新形变模板\(a^*\)变量。通过迭代两个过程，形变模板\(a^*\)将逐步连续地接近目标点集\(b^*\)，最终与它们在\(b^*\)中的真实对应点匹配。

2.1 基于多特征的对应关系评估

在第一步中，基于能量函数，最小化多特征评估每次迭代过程中的对应点判断函数表示为

\[
E(M) = \sum_{i=1}^{I} \sum_{j=1}^{J} M_{ij} C_{ij}
\]

其中，\(M = \{M_{ij}\}\)是优化变量，\(C_{ij}\)是衡量能量函数，\(M_{ij} = 1, i=1,2,\ldots,A\)并且\(M_{ij} = 0, i=1,2,\ldots,A\)。所述混合能量函数优化矩阵，定义为

\[
E_{a*} = G_{a*} + L_{a*} \tag{2}
\]

其中，\(G_{a*}\)是一个邻接参数，控制\(G_{a*}\)和\(L_{a*}\)的平滑和\(a^*\)值通过一个线性退火计划\(T = T_0, b\)逐渐减小。\(G_{a*}\)是全局特征差异矩阵，定义为

\[
G_{a*} = \| a_i^* - b_j \|^2 \tag{3}
\]

它描述点集\(a_i^*\)和\(b_j\)之间的全局几何结构差异，并且被一种线性配准解决方案最小化。局部特征差异矩阵\(L_{a*}\)则被定义为

\[
L_{a*} = \sum_{i=1}^{I} \sum_{j=1}^{J} T(N(a_i^*), b_j) - N(b_j) \| \tag{4}
\]

它描述点集\(a_i^*\)和\(b_j\)之间的局部几何结构差异，同样被一种线性配准解决方案最小化。其中，\(T\)代表相邻点的数量，\(N(a_i^*), b_j\)分别表示\(a_i^*\)和\(b_j\)的第\(i\)个点的最近点，对保持拓扑结构和局部相似性测定起着重要的作用，此时处理噪声、冗余、旋转和缺失点。\(T\)是平移函数，表示为

\[
T(N(a_i^*), b_j) = N(a_i^*) + (b_j - a_i^*) \tag{5}
\]

为了最小化\(C_{a*}\)，我们采用一种线性配准解决方案。首先，给\(a_i^*\)一个较大的初始值，然后通过公式\(a_i^* = a_i^* - T\)逐渐减小其值，能量最小化用于计算当前局部特征差异\(L_{a*}\)。由于\(a_i^*\)逐渐变小，处理过程趋向于最小化全局几何结构特征差异\(G_{a*}\)。因此，我们能够通过最小化两个点阵之间全局或者局部特征差异有效地评估对应关系。

2.2 基于高斯混合模型的空间变换更新

在第二步中，利用一种基于高斯混合模型的空间变换更新\(a^*\)的位置，模型定义为

\[
E(a^*) = \int |f(x_i^*)| \frac{2}{\pi} \times \int |f(x_i^*)| |f(x_i)| \int |f(x_i)| |f(x_i)| \| \tag{6}
\]

其中，\(a_i^*\)是能量最小化上界由\(f(x_i^*)\)引入的一个参数，\(f(x_i^*)\)代表对低概率点\(a_i^*\)补偿，比最大似然估计给出的补偿，\(-\log f(x_i)|f(x_i)|\)的执行效果更好。

现在回到空间变换更新的推导上，设\(S = (a_i, b_j)\)，表示点对应关系集合，\(f_i^*\)定义为\(b_j = f(a_i)\)，且需要进行估计以似合点集，因为将\(L_a\)距离应用到多元正态分布中，那么处理球形的参考点矩阵\(S\)时，只需要简单的设置，立即把\(S\)转换为\(\Lambda_s\)。

\[
\delta(b_i - f(a_i)) - N(0, \Sigma_s) \Rightarrow N(0, \Lambda_s)
\]

其中，\(a_i = s_1, s_2, \ldots, s_r = r^2\)，需要一种对冗余成熟低敏感的估计函数在处理点对应关系集合\(S\)方面限定相对较好的作用，假设内点受到正态分布所带来的噪声的影响，采用\(L_a\)最小化方法评估我们的能量函数，如下所示，

\[
E(a_i, \Delta) = \frac{1}{2} \left(a_i - \sum_{n=1}^{N} (b_n - f(a_i)) \right)^2 \tag{7}
\]

其中，\(a_i\)为非刚性变换的需求，然后，在一个泛函空间对变换进行迭代，该空间称为再生核希尔伯特空间\((RKHS)\)。在此，简单回顾一下再生核希尔伯特空间的基本原理，设\(H\)为一个再生核希尔伯特空间，由正定核函数内核\(K: R^2 \times R^2 \rightarrow R^2\)定义，\(d\)表示数据的维数，使用函数\(f(a_i) = \sum_{n=1}^{N} K(a_i, a_n)\)。
\(c_{[a,x]} \) 代表理想变换函数，其中系数 \(c_i \) 是一个 \(d \times 1 \) 的一维向量。这样，在无限维数的希尔伯特空间上，最小化问题变得更加简化，便于寻求，因此系数 \(c_i \) 的有限集，为了避免重要计算的复杂度，采用稀疏逼近方法，即随机地选择一个大小为 \(k \) 个输入点的子集 \([a_i]_{i=1}^k\)。因此，试图找到这样一种形式的解：

\[
f(a) = \sum_{i=1}^k \langle g, c_i \rangle c_i	ag{10}\]

然后，加上正则项，以增加变换的光滑性约束，扩展形式如下，

\[
E_2(f, \Lambda) = \frac{1}{2\pi^d} \left[\int \left(\sqrt{2\pi} \right)^d |\Lambda|^{\frac{d}{2}} \sum_{i=1}^k \langle g, c_i \rangle c_i \right] + \lambda \| f \|_2^2
\]

其中，\(\Lambda \) 是一个正则参数，决定公式中各项的取舍，\(\| f \|_2 \) 起到稳定的作用，基于对角可分解内核 \(\Gamma = \sum_{i=1}^k \Gamma_i \) 的参数控制着两个点阵相互作用范围的宽度，\(\lambda \) 为\(\| f \|_2^2 \) 的正则参数。

将式子（11）可转换为如下形式，

\[
E_2(f, \Lambda) = \frac{1}{2\pi^d} \left[\int \left(\sqrt{2\pi} \right)^d |\Lambda|^{\frac{d}{2}} \sum_{i=1}^k \langle g, c_i \rangle c_i \right] + \lambda \| f \|_2^2
\]

其中，\(\Gamma = \sum_{i=1}^k \Gamma_i \) 是一个正则参数项，决定公式中各项的取舍，\(\| f \|_2 \) 起到稳定的作用，基于对角可分解内核 \(\Gamma = \sum_{i=1}^k \Gamma_i \) 的参数控制着两个点阵相互作用范围的宽度，\(\lambda \) 为\(\| f \|_2^2 \) 的正则参数。

2.4 本文算法和参数设置

算法 1 给出了本文所提方法的伪代码。

退火参数 \(T_n \) 等于 \(\lambda \) 和 \(\beta \) 之间最大方程距离的 \(1/10 \)。\(T_{final} \) 等于 \(\lambda \) 中相隔点的方程距离的 \(1/8 \)。\(h=0.7, \gamma=0.5, \sigma^2=0.05 \)。

附参数设置的决定与相隔点的距离，对参数的设置。相隔点的距离，初始化为相隔点的距离，相隔点的距离，相隔点的距离，相隔点的距离，相隔点的距离，相隔点的距离，相隔点的距离。本文设 \(\rho=5 \)，但是为了优化某些特定情况，可以调整 \(\rho \) 的值。

附参数设置的决定与相隔点的距离，对参数的设置。相隔点的距离，初始化为相隔点的距离，相隔点的距离，相隔点的距离，相隔点的距离，相隔点的距离，相隔点的距离。本文设 \(\rho=5 \)，但是为了优化某些特定情况，可以调整 \(\rho \) 的值。

2.3 退火算法

确定性退火技术被广泛应用，它能够有效处理复杂的汇总优化问题。在此，进一步给出本文方法所应用到的两个退火计划的详细说明。

在退火过程开始时，需要处理一个退火参数 \(T \)，在本文中，退火参数 \(T \) 开始

2.3 实验

用两个实验室测试本文提出方法的性能，轮廓配准（Contour point sets）和图像特征点配准（Feature point sets），并且与 4 个先进方法

CFD [21]，GMMREG，FGM 以及 Lclop

2.3 退火算法

确定性退火技术被广泛应用，它能够有效处理复杂的汇总优化问题。在此，进一步给出本文方法所应用到的两个退火计划的详细说明。

在退火过程开始时，需要处理一个退火参数 \(T \)，在本文中，退火参数 \(T \) 开始

2.3 实验

用两个实验室测试本文提出方法的性能，轮廓配准（Contour point sets）和图像特征点配准（Feature point sets），并且与 4 个先进方法

CFD [21]，GMMREG，FGM 以及 Lclop

2.3 退火算法

确定性退火技术被广泛应用，它能够有效处理复杂的汇总优化问题。在此，进一步给出本文方法所应用到的两个退火计划的详细说明。

在退火过程开始时，需要处理一个退火参数 \(T \)，在本文中，退火参数 \(T \) 开始
3.1 轮廓配准实验

本文选了 Fish1, Fish2, Face2D, Maple, Bird 这 5 个点阵图进行轮廓配准实验对比，目标点阵的生成、误差测量以及性能评估沿用了 CPD 中的方法。

目标点阵，在每个源点阵的边界上设置 8 个控制点，每个控制点有 4 个自由移动方向和 0.2 的移动距离，以便于生成一系列恰当且丰富的变形。每个控制点移动的顺序和方向随机确定。被移动的控制点的移动距离界定了变形的等级。在二维实例中有 8 个等级，被移动的控制点越多，变形等级越高。在变形基础上构建噪声干扰情况，使用 5 个高斯白噪声等级，从 0.01 到 0.05。存在数据冗余情况实验则使用 5 个数据冗余比率，从 0.2 到 1。

误差测量，为了直接公平的比较，沿用 CPD 的误差测量方法，本文中误差测量为形变模板与实际对应点阵之间的均方距离。

性能评估，使用平均误差比较这些方法的性能，每个设置，包括形变程度、噪声等级、数据冗余，都进行 50 次随机重复实验。

从 Fish1, Fish2, Face2D, Maple, Bird 5 个点阵的轮廓配准结果对所提方法进行性能评估，点阵通常具有较高的抽样率和更为复杂的局部相似性。下面根据表 1 中不同方法下的轮廓配准结果比较，分别从形变、噪声、冗余 3 种情况进行对比分析。图 1 是误差曲线图。

![误差曲线图](image)

误差曲线图显示了 5 个随机实验下的平均误差和标准误差。

图 1 本文方法(×)，CPD(×)，GMMREG(□)方法在 5 个点阵配准上的实验性能比较。

形变实验，图 1 中第一列分别给出了上述 5 个点阵在 8 个变形等级下的轮廓配准实验误差结果，每个点阵配准都分别采用了本文方法 CPD 以及 GMMREG 3 种方法，误差线表明了不同方法性能的性能，包括平均误差和标准偏差。本文方法在所有实验中给出了最高的配准结果，并在所有形变等级中给出了最好的性能。随着形变等级升高，Fish1、...
Fish2, Face2D, Maple, Bird 的配准均保持误差最小，且性能稳定。图 2 给出了形变实验配准实例。

图 2 形变实验配准模式和配准实例

噪音干扰，图 1 中第二列分别给出了上述 5 个点阵在 5 个噪音等级干扰情况下的轮廓配准实验误差结果，每个点阵配准都分别采用了本文方法、CPD 以及 GMMREG 3 种方法，误差图表明了不同方法各自的性能，包括平均误差和标准偏差。由图可知，本文方法的误差图在整体上比 CPD、GMMREG 都低很多，并且随着噪音干扰程度的增加，在 5 个点阵上的实验中都表现出持续稳定的配准性能。图 3 给出了噪音干扰情况下的配准实例。

图 3 噪音干扰配准模式和配准实例

数据冗余，图 1 中第三列分别给出了上述 5 个点阵在 5 个数据冗余等级情况下的轮廓配准实验误差结果，每个点阵配准都分别采用了本文方法、CPD 以及 GMMREG 3 种方法，误差图表明了不同方法各自的性能，包括平均误差和标准偏差。在 Fish2, Face2D, Maple 3 个点阵配准实验中，所提方法效果最好。在数据冗余较小时，Fish2 的轮廓配准误差比 CPD 略高，Bird 的配准性能稳定性能最好。图 4 给出了数据冗余配准实例。

图 4 数据冗余配准模式和配准实例

3.2 图像特征点配准实验

在第二个系列实验中，分别对图像 (CMU Hotel and House sequence) 和实景图 (Pascal 2007 Challenge datasets) 进行了配准。

相比于轮廓配准中轮廓点的数量，系列图像配准特征点的数量减少，只是稀疏地分布在图像上。CMU Hotel 和 CMU House 是最受欢迎的系列点集，通常用于测试基于 Graph 的学习算法的性能。Hotel 和 House 数据集分别由 101 和 111 幅图组成，每幅图有 30 个特征点，通过实验比较本文方法与 FGM[9], Leordeanu[10], CPD, GMMREG 4 种方法的性能，图 5 给出了本文方法的配准实例。

图 5 CMU Hotel(上)与 CMU House(下)配准实例

从 Pascal 2007 Challenge 数据集[11]中挑选了 30 对汽车和 20 对摩托车实例图，通过特征点配准测试，比较本文方法与 FGM[9], Leordeanu[10], CPD, GMMREG 4 种方法的性能，我们的匹配率明显高于其他 4 种方法。图 6 给出了本文方法的配准实例，表 1 给出了匹配率。

图 6 Pascal 2007 Challenge quad 汽车和摩托车配准实例
表1 CMU Hotel, CMU House以及Car and Motorcycle的匹配率

<table>
<thead>
<tr>
<th>Method</th>
<th>Parameter Setting</th>
<th>Hotel</th>
<th>House</th>
<th>Car and Motorcycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ours</td>
<td></td>
<td>99.3%</td>
<td>100%</td>
<td>94.2%</td>
</tr>
<tr>
<td>CPD</td>
<td></td>
<td>98.5%</td>
<td>99.5%</td>
<td>92.9%</td>
</tr>
<tr>
<td>GMMRE</td>
<td></td>
<td>97.1%</td>
<td>98.5%</td>
<td>82.9%</td>
</tr>
<tr>
<td>PGM</td>
<td></td>
<td>~100%</td>
<td>~80%</td>
<td>~80%</td>
</tr>
<tr>
<td>Leordeanu et al[7]</td>
<td></td>
<td>94.8%</td>
<td>95.8%</td>
<td>80%</td>
</tr>
</tbody>
</table>

结束语
本文介绍了一种新的配准方法，包含了基于多特征的对应关系评估和基于高斯混合模型的空间变换更新，并与其他3种先进的方法进行了性能比较，实验表明本文方法表现出最好的效果，特别是在形变和噪音情况下。下面列出了此方法的重要贡献。

1. **基于多特征的对应关系评估**
 我们实现了一种基于多特征的鲁棒性对应关系评估方法，此方法提供了一种更加灵活的方式来评估点阵间的对应关系。

2. **基于高斯混合模型的空间变换更新**
 我们提出了一种基于最小化两个高斯混合模型之间的距离的鲁棒性变换评估函数。

参考文献

[27] Zhou F., De la Torre F. Factorized graph matching[J]. IEEE Conference on Computer Vision and Pattern Recognition, 2012, 23(10), 127-134
