Fuzzy BCK-algebras and its Fuzzy Left (Right) Reduced Ideals

PENG Jia-yin
(School of Mathematics and Information Science, Neijiang Normal University, Neijiang 641199, China)

Abstract Introducing the concepts of fuzzy spaces and fuzzy binary operations proposed by Dib into BCK-algebra, a new approach to study fuzzy BCK-algebra was given. The concepts of fuzzy subalgebras, fuzzy left (right) reduced ideals and fuzzy homomorphisms of fuzzy BCK-algebras were put forward. A new theory of fuzzy BCK algebra was preliminarily established. The results show that the classical fuzzy subalgebra and fuzzy left (right) reduced ideal of BCK-algebra are the special cases of the new theory, so the new method provides a powerful tool to develop the theory of fuzzy BCK-algebras.

Keywords Fuzzy space, Fuzzy binary operation, Fuzzy BCK-algebra, Fuzzy left (right) reduced ideal, Fuzzy homomorphism.

1

Zadeh[1], Rosenfeld[2], Negoița[3], Ralescu[4], Rosenfeld[5], Anthony[6], Sherwood[7], Kuroki[8], Liu[9], Nanda[10], Heyting[11], Dib[12], Liu[13], Rosenfeld[14], Xie[15].

1. Introduction

BCK-algebras were introduced by Ahti [16] and T. Takagi [17] in 1966. Since then, many people have studied fuzzy BCK-algebras and fuzzy ideals, and made some interesting results [18].

In this paper, we introduce fuzzy BCK-algebras and fuzzy ideals, and present new results on the related concepts. The main new result presented here is the introduction of fuzzy left and right reduced ideals in BCK-algebras.

2

BCK-algebras were introduced by Ahti [16] and T. Takagi [17] in 1966. Since then, many people have studied fuzzy BCK-algebras and fuzzy ideals, and made some interesting results [18].

In this paper, we introduce fuzzy BCK-algebras and fuzzy ideals, and present new results on the related concepts. The main new result presented here is the introduction of fuzzy left and right reduced ideals in BCK-algebras.
设定义一个函数

\[(x, y) \rightarrow f_{x,y}(r, s) = rf_{x,0} + sf_{y,0}. \]

\[A \times B = \bigvee_{x, y \in A} \bigvee_{r, s \in B} f_{x,y}(r, s). \]

\[A_{FB} = \bigvee_{x \in X} \bigvee_{y \in Y} (x, A(x))B(y). \]

\[C = \bigvee_{x \in X} \bigvee_{y \in Y} x \times y. \]

\[D = \bigvee_{x \in X} \bigvee_{y \in Y} x \times y. \]

\[E = \bigvee_{x \in X} \bigvee_{y \in Y} x \times y. \]

\[F = \bigvee_{x \in X} \bigvee_{y \in Y} x \times y. \]

\[G = \bigvee_{x \in X} \bigvee_{y \in Y} x \times y. \]

\[H = \bigvee_{x \in X} \bigvee_{y \in Y} x \times y. \]

\[I = \bigvee_{x \in X} \bigvee_{y \in Y} x \times y. \]

\[J = \bigvee_{x \in X} \bigvee_{y \in Y} x \times y. \]

\[K = \bigvee_{x \in X} \bigvee_{y \in Y} x \times y. \]

\[L = \bigvee_{x \in X} \bigvee_{y \in Y} x \times y. \]

\[M = \bigvee_{x \in X} \bigvee_{y \in Y} x \times y. \]

\[N = \bigvee_{x \in X} \bigvee_{y \in Y} x \times y. \]

\[O = \bigvee_{x \in X} \bigvee_{y \in Y} x \times y. \]

\[P = \bigvee_{x \in X} \bigvee_{y \in Y} x \times y. \]

\[Q = \bigvee_{x \in X} \bigvee_{y \in Y} x \times y. \]

\[R = \bigvee_{x \in X} \bigvee_{y \in Y} x \times y. \]

\[S = \bigvee_{x \in X} \bigvee_{y \in Y} x \times y. \]

\[T = \bigvee_{x \in X} \bigvee_{y \in Y} x \times y. \]

\[U = \bigvee_{x \in X} \bigvee_{y \in Y} x \times y. \]

\[V = \bigvee_{x \in X} \bigvee_{y \in Y} x \times y. \]

\[W = \bigvee_{x \in X} \bigvee_{y \in Y} x \times y. \]

\[X = \bigvee_{x \in X} \bigvee_{y \in Y} x \times y. \]

\[Y = \bigvee_{x \in X} \bigvee_{y \in Y} x \times y. \]

\[Z = \bigvee_{x \in X} \bigvee_{y \in Y} x \times y. \]
(2) \(f_{x,y} \in U \cap I \). \(U \) 为模糊代数 \((x, I, F, (0, I)) \) 的模糊代数。对所有 \(x \in U \), 有

* 1. \(U \) 为模糊代数 \((X, F, (0, I)) \) 的模糊代数。

\[F(x, y) = \min \{ f_{x,y}, F(x, F(x, y)) \} \]

对所有 \(x \in U \), 有

\[f(x, y) = \min \{ f_{x,y}, f(x, F(x, y)) \} \]

对所有 \(x \in U \), 有

\[F(x, y) = \min \{ f_{x,y}, F(x, F(x, y)) \} \]

对所有 \(x \in U \), 有

\[f(x, y) = \min \{ f_{x,y}, f(x, F(x, y)) \} \]

对所有 \(x \in U \), 有

\[F(x, y) = \min \{ f_{x,y}, F(x, F(x, y)) \} \]

对所有 \(x \in U \), 有

\[f(x, y) = \min \{ f_{x,y}, f(x, F(x, y)) \} \]

对所有 \(x \in U \), 有

\[F(x, y) = \min \{ f_{x,y}, F(x, F(x, y)) \} \]

对所有 \(x \in U \), 有

\[f(x, y) = \min \{ f_{x,y}, f(x, F(x, y)) \} \]

对所有 \(x \in U \), 有

\[F(x, y) = \min \{ f_{x,y}, F(x, F(x, y)) \} \]

对所有 \(x \in U \), 有

\[f(x, y) = \min \{ f_{x,y}, f(x, F(x, y)) \} \]

对所有 \(x \in U \), 有

\[F(x, y) = \min \{ f_{x,y}, F(x, F(x, y)) \} \]

对所有 \(x \in U \), 有

\[f(x, y) = \min \{ f_{x,y}, f(x, F(x, y)) \} \]

对所有 \(x \in U \), 有

\[F(x, y) = \min \{ f_{x,y}, F(x, F(x, y)) \} \]

对所有 \(x \in U \), 有

\[f(x, y) = \min \{ f_{x,y}, f(x, F(x, y)) \} \]

对所有 \(x \in U \), 有

\[F(x, y) = \min \{ f_{x,y}, F(x, F(x, y)) \} \]

对所有 \(x \in U \), 有

\[f(x, y) = \min \{ f_{x,y}, f(x, F(x, y)) \} \]
理想的证明是类似的

$\forall I \in \mathbb{R}$,

$(\forall I \in \mathbb{R}) (f(r, s) = r \land s \in (X, F)) \iff \exists G = (F, \gamma),$

$g_{a}(r, s) = g_{a}(r, s) = g_{a}
I 普通左简理想定理

这表明是模糊子集且

其不是模糊

故有

证明定理

如果

或者

对任意

或

或

为模糊同态映射

为模糊

是模糊

G

为模糊

为模糊

BCK

G

BCK

BCK
\[\varphi(x) = \Phi(x') \quad \text{and} \quad \Phi(x) = \Phi(x') \]