Analysis of Influence of Mutual Inductances on Energy Transmitting Between Receiving Coil in WRSNs

WANG Xu LIN Zhi-gui LIU Xiao-feng MENG De-jun
(School of Electronics and Information Engineering・Tianjin Polytechnic University・Tianjin 300387-China)
(Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems・Tianjin 300387-China)

Abstract Based on the principle of coupled magnetic resonant circuit model, this paper theoretically analyzed the influence of mutual inductance between receiving coils on the energy transmitting efficiency and power of receiving nodes. The influence factors affecting the mutual inductance between the receiving coils are the distance, height and angle between the receiving coils. The relationship between three factors and energy transmitting efficiency and power of the node is established and theoretically analyzed. Through the research of the one-to-two charging process of the wireless rechargeable sensor networks based on magnetic coupling resonance technology, the relationships between the three factors and the mutual inductance of the receiving coil, the energy transmitting efficiency of the node and the power are analyzed. The results show that when the receiving coils are on the same side, the closer the relative distance between the two receiving coils is, the greater the mutual inductance is, and the stronger the mutual inhibition energy reception of the node is.

Keywords Wireless rechargeable sensor networks (WRSNs), Coupled magnetic energy transmitting, One-to-many charging method, Mutual inductance

实际上，一对多磁耦合谐振式无线能量传输时，能量传输效率不仅受线圈对和耦合线圈互感的影响，还会受到接收线圈之间互感的影响。Ahn 等[10]通过单发射多接收端实验分
其中，V_s 是发送端交流电压有效值，$R_{tx} = R + R_o$，$R_{rx} = R_x + R_o$。

将 I_{ex} 表示为两相同接收端电路的电流，相位上，$I_{ex} = I_1 + I_{ex}/I_1$，计算如下：

$$I_{ex}/I_1 = \frac{k\sqrt{L_{tx}/L_{rx}}}{\sqrt{1 + k_{ex}/\omega^2}}$$

（2）

$$I_{ex}/I_1 \vert_{\omega \rightarrow \infty}$$

决定决定了传输效率，由式（2）可知，当传输效率最大时，驱动频率为：

$$\omega = \frac{\sqrt{L_{tx} R_{ex}}}{\sqrt{(1 + k_{ex})/\omega^2} \cdot L_{tx} \cdot L_{rx}}$$

（3）

随着两个接收端线圈的耦合增强，驱动频率 ω 随之降低。

设品质因数 $Q_{ex} = \frac{\omega_{ex}}{R_{ex}}$，将式（3）代入式（2），得到：

$$I_{ex}/I_1 = \frac{kQ_{ex}}{\sqrt{1 + k_{ex}}} \cdot L_{tx} \cdot L_{rx}$$

（4）

式（4）表明多个接收端线圈的耦合将降低传输效率的峰值。在两个接收端线圈的情况下，单节点接收端的接收功率为：

$$P_{tx} = R_x \cdot I_1 \cdot I_1$$

（5）

发送端发送功率为：

$$P_{tx} = (R_x + R_p) \cdot I_1 \cdot I_1$$

（6）

系统传输效率可以被定义为：

$$\eta = \frac{R_x \cdot I_1 \cdot I_1}{(R_x + R_p) \cdot I_1 \cdot I_1}$$

（7）

将式（4）代入式（7），得到接收端耦合系数 k_{ex} 与传输效率的关系：

$$\frac{2R_x (jQ_{ex})^{1/2} \cdot L_{tx} \cdot L_{rx}}{(1 + k_{ex})/\omega^2} (R_x + R_p)$$

（8）

从式（8）可知，基于磁耦合谐振的无线传输效率与多接收端电磁波线圈的耦合系数 k_{ex} 有直接关系。当线圈参数及负载 R_x 一定，磁耦合谐振接收端线圈之间的耦合系数 k_{ex} 直接影响传输效率，当 k_{ex} 逐渐增大时，传输效率逐渐变小。

已知空间中一对一接收线圈的互感 M 和耦合系数 k_{ex} 的关系为：

$$k_{ex} = \frac{M}{\sqrt{L_{lx} L_x}}$$

（9）

其中，L_x, L_x 分别为两个线圈自感。当空间线圈中一对密绕圆形线圈时，自感与线圈的半径，匝数，线圈半径等参数有关。当这些参数固定，相应地自感 L_x 和 L_x 固定。互感 M 与耦合系数 k_{ex} 成正相关。将式（9）代入式（8）中，得到：

$$\frac{2R_x (jQ_{ex})^{1/2} \cdot L_{tx} \cdot L_{rx}}{(1 + k_{ex})/\omega^2} (R_x + R_p)$$

（10）

通过式（10）得出，多接收端电磁波线圈的互感 M 与传输效率成反比；接收端线圈间互感越大，传输效率越低。

互感 M 通过磁通量来计算，文献[1-10]采用椭圆积分法，推导出任意两共轴圆线圈间互感系数的函数表达式，虽然准确但不便于计算。因此，本文假设磁场恒定，磁通量均匀分布且无漏磁现象，当完全相同的两线圈 L_1, L_2 同轴而重叠放置时，其匝数为 n，半径为 r，两线圈水平距离 x 为 D，则两条线圈互感 M 可简化为：

$$M \approx \frac{\pi}{2} \cdot \frac{j \omega \cdot n \cdot r}{D}$$

（11）

![图1 基于磁耦合谐振的单发双收等效电路](image)
其中，为真空磁导率，为线圈半径，为线圈匝数，为传输距离。当，参数均为定值，与的三次方成反比；当逐渐增大时，减小，传能效率逐渐变小。

线圈，不同轴或不重叠放置时，传能不仅受线圈间距离影响，也受线圈间相对位置的影响。不重叠线圈之间存在角度差，不同轴之间存在高度差。

接收线圈在发射线圈上的投影决定了其接收的磁通量，影响了传能值。当两个线圈存在一定的位置关系时，传能与比系数有关，当两个线圈同轴且重叠放置时，比系数为，当两个圆形线圈高度相同，但线圈轴线之间有一夹角时，相应的比系数为。因此高度同，但轴存在一定的夹角时的两圆形线圈的互感为：

\[M \approx \frac{\pi}{2} \cdot \frac{\mu_0 r^2 n^2}{D^4} \cdot \cos \theta \tag{12} \]

其中，为线圈轴线夹角，当时，最大；当时，，。

当两个线圈平行时，但两线圈有一高度差时，其互感同样应乘以比系数。则两线圈重叠面积占发射线圈面积的比例为，表示两个圆形线圈的重叠面积：

\[S = 2r^2 \cos^{-1} \left(\frac{h}{2r} \right) - \frac{1}{2} h \sqrt{4r^2 - h^2} \tag{13} \]

图2 接收线圈在发射线圈平面的投影

因此，相互平行但不同轴，存在一定高度差的两圆形线圈的互感为：

\[M \approx \frac{\pi}{2} \cdot \frac{\mu_0 r^2 n^2}{D^4} \cdot \frac{S}{\pi r} \tag{14} \]

其中，的定义为高度比例系数，当时，最大；当时，。

当空间中两个线圈距离为，且存在角度差时，高度差时，任意两圆形线圈不平行不同轴时，的传能为：

\[M \approx \frac{\pi}{2} \cdot \frac{\mu_0 r^2 n^2}{D^4} \cdot \frac{S}{\pi r} \cdot \cos \theta \tag{15} \]

通过式(15)看出，距离、角度、高度因素与传能直接关系。结合式(10)可知，这些因素与传能效率直接关系。

2 接收线圈间互感对传能影响的实验分析

2.1 一对磁耦合诊断传能实验平台

基于磁耦合的WRSNs中一对传能实验平台如图3所示，各模块电路参数如下：发射端和接收端电路参数相同，线圈匝数为15，线圈电感为78uH，线圈直径19cm，电容170mF，谐振频率83kHz。发射端采用LC串联结构，电源电压为+8V，电源电流1A；接收端采用LC并联结构，对电池充电。发射端线圈发送能量，两个接收端各自搭载840mA充电电池，通过接收线圈接收能量为其补充能量。

图3 基于磁耦合的WRSNs中一对传能实验平台

在WRSNs磁耦合谐振一对二充电实验平台的基础上，将两个Sensor节点接收线圈位于MC发射线圈的一侧，从Sensor节点间距离、角度、高度3个方面进行实验，研究接收线圈之间互感对能量分配的影响关系。

2.2 单线圈距离变化情况下互感对节点传能的影响

初始时，两个接收线圈和发射线圈位置固定，3个线圈的圆心处于同一平面上，线圈间距离如图4所示。实验中每次移动Sensor节点B接收线圈，使其距离Sensor节点A增加20mm，当MC同时为节点A和B充电时，记录节点B接收线圈与MC的接收点，MC发送电压和电流、节点A的接收电压及电流、节点B的接收电压及电流等参数，计算MC发送功率、节点A和B的接收功率及传能效率，节点A、节点B间的互感为，计算结果如表1所示。

图4 单线圈距离变化的情况下节点间互感影响示意图

| 表1 单个节点距离变化时各项指标变化情况
<table>
<thead>
<tr>
<th>距离/mm</th>
<th>发送电压/V</th>
<th>发送电流/mA</th>
<th>A接收电压/V</th>
<th>A接收电流/mA</th>
<th>B接收电压/V</th>
<th>B接收电流/mA</th>
<th>功率A/W</th>
<th>功率B/W</th>
<th>功率A/％</th>
<th>功率B/％</th>
<th>互感/%</th>
<th>互感10^{-3}/mH</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>7.63</td>
<td>933</td>
<td>5.78</td>
<td>210</td>
<td>5.75</td>
<td>47.2</td>
<td>1.23</td>
<td>0.27</td>
<td>17.05</td>
<td>3.81</td>
<td>525</td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>7.65</td>
<td>941</td>
<td>5.80</td>
<td>220</td>
<td>5.71</td>
<td>37.3</td>
<td>1.28</td>
<td>0.21</td>
<td>17.81</td>
<td>2.96</td>
<td>496</td>
<td></td>
</tr>
<tr>
<td>240</td>
<td>7.66</td>
<td>944</td>
<td>5.83</td>
<td>227</td>
<td>5.67</td>
<td>31.8</td>
<td>1.35</td>
<td>0.18</td>
<td>18.50</td>
<td>2.52</td>
<td>479</td>
<td></td>
</tr>
<tr>
<td>260</td>
<td>7.67</td>
<td>931</td>
<td>5.85</td>
<td>230</td>
<td>5.82</td>
<td>28.2</td>
<td>1.35</td>
<td>0.15</td>
<td>18.84</td>
<td>2.06</td>
<td>468</td>
<td></td>
</tr>
<tr>
<td>280</td>
<td>7.67</td>
<td>934</td>
<td>5.85</td>
<td>232</td>
<td>5.59</td>
<td>21.7</td>
<td>1.36</td>
<td>0.12</td>
<td>18.95</td>
<td>1.69</td>
<td>462</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>7.69</td>
<td>917</td>
<td>5.85</td>
<td>232</td>
<td>5.58</td>
<td>17.6</td>
<td>1.36</td>
<td>0.10</td>
<td>19.25</td>
<td>1.39</td>
<td>461</td>
<td></td>
</tr>
<tr>
<td>320</td>
<td>7.69</td>
<td>919</td>
<td>5.85</td>
<td>233</td>
<td>5.58</td>
<td>12.4</td>
<td>1.36</td>
<td>0.07</td>
<td>19.29</td>
<td>0.98</td>
<td>459</td>
<td></td>
</tr>
<tr>
<td>340</td>
<td>7.69</td>
<td>913</td>
<td>5.85</td>
<td>232</td>
<td>5.58</td>
<td>10.6</td>
<td>1.36</td>
<td>0.06</td>
<td>19.33</td>
<td>0.84</td>
<td>461</td>
<td></td>
</tr>
<tr>
<td>360</td>
<td>7.68</td>
<td>916</td>
<td>5.85</td>
<td>233</td>
<td>5.58</td>
<td>10.3</td>
<td>1.36</td>
<td>0.06</td>
<td>19.38</td>
<td>0.82</td>
<td>459</td>
<td></td>
</tr>
</tbody>
</table>
依据表 1 数据，以距离为横坐标，分别以节点 A 和 B 互感系数 M、传输效率和接收功率作为纵坐标，得到距离 M 及传能性能的关系曲线，如图 5 所示。

大值为 525mH; 随着 B 节点距离增加，互感逐渐减小，节点 A 的传输效率和接收功率却逐渐增大，到 280～360 mm 逐渐平稳，如图 5(b)、图 5(c) 所示; 节点 A 与 MC 距离不变，相应地二者之间互感不变，说明节点 A、B 间互感抑制节点 A 的能量接收。从图 5(b)、图 5(c)看出，节点 B 的接收功率和效率随其距离增加而降低，受节点 A 和 B 间互感影响较小，主要受节点 B 与 MC 间距离影响较大。

2.3 单线圈角度变化情况下互感对节点传能的影响
从角度方面进行实验，分析接收端互感对节点传能的影响，具体实验结构如图 6 所示，两接收线圈与发射线圈共轴，3 个线圈距离位置固定，即 Sensor 点 A 的接收线圈与 MC 发射线圈的距离为 150 mm，Sensor 点 B 的接收线圈与 MC 发射线圈的距离为 300 mm。初始时，节点 A 接收线圈与水平面夹角为 0，转动节点 A 接收线圈，使其角度从 0 依次增大到 90°(步长为 5°); 当 MC 同时为节点 A 和 B 充电时，记录节点 A 接收线圈转动角度、MC 发送电压和电流、节点 A 的接收电压及电流、节点 B 的接收电压及电流等参数，计算 MC 发送功率，节点 A 和 B 的接收功率及传输效率，结果如表 2 所列，相应地互感、接收功率、传输效率与角度的关系如图 7 所示。

从图 7(a)所示，节点 A 和 B 接收线圈间互感随节点 A 线圈角度的增大而增大，在 55°时达到最大，随后趋于稳定; 相应地，节点 B 的接收功率和效率随节点 A 线圈角度的增大而减小，在 50°时趋于稳定，如图 7(b)和图 7(c)所示，这说明节点 A 和 B 接收线圈间互感对节点 B 的接收功率和效率是有影响的，对于发射线圈同轴同侧的两个节点，接收线圈之间的角度变化使得互感随之改变，抑制其能量接收; 当两个接收线圈平行时，对系统的能量接收性能的抑制作用最强。

从图 7(b)和图 7(c)看出，节点 A 的接收功率和效率初始为 0，随着角度的增加而增大，在 55°时达到最大，随后趋于稳定。

表 2 单个 A 节点角度变化时各项数据变化情况

<table>
<thead>
<tr>
<th>转动角度/°</th>
<th>发射电压/V</th>
<th>发射电流/mA</th>
<th>A 接收电压/V</th>
<th>A 接收电流/mA</th>
<th>B 接收电压/V</th>
<th>B 接收电流/mA</th>
<th>A 接收功率 W</th>
<th>B 接收功率 W</th>
<th>效率 A/%</th>
<th>效率 B/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°</td>
<td>7.76</td>
<td>850</td>
<td>0.38</td>
<td>0.62</td>
<td>5.38</td>
<td>36.5</td>
<td>0.00</td>
<td>0.20</td>
<td>0.26</td>
<td>2.98</td>
</tr>
<tr>
<td>5°</td>
<td>7.76</td>
<td>870</td>
<td>3.49</td>
<td>19.5</td>
<td>5.38</td>
<td>37.1</td>
<td>0.07</td>
<td>0.20</td>
<td>1.26</td>
<td>2.96</td>
</tr>
<tr>
<td>10°</td>
<td>7.77</td>
<td>882</td>
<td>5.72</td>
<td>65.4</td>
<td>5.38</td>
<td>36.4</td>
<td>0.37</td>
<td>0.20</td>
<td>5.46</td>
<td>2.86</td>
</tr>
<tr>
<td>15°</td>
<td>7.78</td>
<td>875</td>
<td>5.79</td>
<td>106</td>
<td>5.38</td>
<td>32.5</td>
<td>0.64</td>
<td>0.17</td>
<td>8.98</td>
<td>2.57</td>
</tr>
<tr>
<td>20°</td>
<td>7.79</td>
<td>851</td>
<td>5.96</td>
<td>142</td>
<td>5.38</td>
<td>28.1</td>
<td>0.85</td>
<td>0.15</td>
<td>12.77</td>
<td>2.28</td>
</tr>
<tr>
<td>25°</td>
<td>7.80</td>
<td>849</td>
<td>5.98</td>
<td>170</td>
<td>5.38</td>
<td>25.1</td>
<td>1.02</td>
<td>0.14</td>
<td>15.35</td>
<td>2.64</td>
</tr>
<tr>
<td>30°</td>
<td>7.81</td>
<td>841</td>
<td>6.01</td>
<td>191</td>
<td>5.38</td>
<td>22.4</td>
<td>1.15</td>
<td>0.12</td>
<td>17.69</td>
<td>1.86</td>
</tr>
<tr>
<td>35°</td>
<td>7.81</td>
<td>812</td>
<td>6.10</td>
<td>206</td>
<td>5.38</td>
<td>20.6</td>
<td>1.26</td>
<td>0.11</td>
<td>19.81</td>
<td>1.75</td>
</tr>
<tr>
<td>40°</td>
<td>7.81</td>
<td>793</td>
<td>6.14</td>
<td>217</td>
<td>5.38</td>
<td>19.3</td>
<td>1.33</td>
<td>0.10</td>
<td>21.51</td>
<td>1.68</td>
</tr>
<tr>
<td>45°</td>
<td>7.82</td>
<td>801</td>
<td>6.17</td>
<td>224</td>
<td>5.38</td>
<td>18.5</td>
<td>1.38</td>
<td>0.10</td>
<td>22.06</td>
<td>1.59</td>
</tr>
<tr>
<td>50°</td>
<td>7.82</td>
<td>802</td>
<td>6.18</td>
<td>228</td>
<td>5.37</td>
<td>18.1</td>
<td>1.41</td>
<td>0.10</td>
<td>22.47</td>
<td>1.55</td>
</tr>
<tr>
<td>55°</td>
<td>7.82</td>
<td>786</td>
<td>6.19</td>
<td>230</td>
<td>5.37</td>
<td>17.8</td>
<td>1.42</td>
<td>0.10</td>
<td>22.87</td>
<td>1.54</td>
</tr>
<tr>
<td>60°</td>
<td>7.82</td>
<td>801</td>
<td>6.19</td>
<td>231</td>
<td>5.37</td>
<td>17.8</td>
<td>1.43</td>
<td>0.10</td>
<td>22.83</td>
<td>1.53</td>
</tr>
<tr>
<td>65°</td>
<td>7.81</td>
<td>807</td>
<td>6.19</td>
<td>233</td>
<td>5.37</td>
<td>17.9</td>
<td>1.44</td>
<td>0.10</td>
<td>22.88</td>
<td>1.53</td>
</tr>
<tr>
<td>70°</td>
<td>7.81</td>
<td>810</td>
<td>6.19</td>
<td>231</td>
<td>5.37</td>
<td>18.1</td>
<td>1.43</td>
<td>0.10</td>
<td>22.60</td>
<td>1.54</td>
</tr>
<tr>
<td>75°</td>
<td>7.81</td>
<td>806</td>
<td>6.19</td>
<td>229</td>
<td>5.37</td>
<td>18.3</td>
<td>1.42</td>
<td>0.10</td>
<td>22.52</td>
<td>1.56</td>
</tr>
<tr>
<td>80°</td>
<td>7.81</td>
<td>810</td>
<td>6.17</td>
<td>229</td>
<td>5.37</td>
<td>18.4</td>
<td>1.41</td>
<td>0.10</td>
<td>22.42</td>
<td>1.57</td>
</tr>
<tr>
<td>85°</td>
<td>7.81</td>
<td>809</td>
<td>6.19</td>
<td>229</td>
<td>5.37</td>
<td>18.4</td>
<td>1.42</td>
<td>0.10</td>
<td>22.34</td>
<td>1.56</td>
</tr>
<tr>
<td>90°</td>
<td>7.81</td>
<td>807</td>
<td>6.19</td>
<td>229</td>
<td>5.37</td>
<td>18.4</td>
<td>1.42</td>
<td>0.10</td>
<td>22.34</td>
<td>1.56</td>
</tr>
</tbody>
</table>
定。在接收功率和效率方面，节点A与节点B有所不同，主要因为节点A接收线圈角度变化，导致节点A接收线圈与MC发射线圈间磁通量变化，且这个变化比节点A和B接收线圈间互感对节点A的接收功率和效率影响大，相应地节点A和B接收线圈间互感对节点A的接收功率和效率的影响比较弱。

2.4 单线圈高度变化情况下互感对节点传能的影响

从高度方向，实验分析接收端互感对节点传能的影响，具体实验结构如图8所示。Sensor节点A和B的接收线圈与MC发射线圈同轴且同时垂直于水平底板，3个线圈位置固定，节点A和B的接收线圈与发射线圈的距离分别为150mm和300mm。实验过程中，节点A/B接收线圈水平位置不变，其高度依次增加，当MC同时为节点A和B充电时，记录节点A接收线圈与水平面的高度、MC发送电压和电流、节点A的接收电压及电流、节点B的接收电压及电流等参数，计算MC发送功率、节点A和B的接收功率及传输效率，结果如表3所示。

![图7 单节点高度变化情况下互感变化和节点间传能关系](image)

![图8 单线圈高度变化情况下互感影响示意图](image)

| 表3 一对两节点高度变化下节点A和B充电数据表 |
|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| 高度/mm | 发送电压/V | 发送电流/mA | 接收电压/V | 接收电流/mA | 接收电压/V | 接收电流/mA | 功率A/W | 功率B/W | 互感率×10⁻²/mH |
| 0 | 7.31 | 962 | 5.83 | 234 | 5.59 | 20.1 | 1.26 | 0.11 | 19.40 | 1.60 | 556 |
| 20 | 7.33 | 963 | 5.78 | 224 | 5.59 | 21.0 | 1.29 | 0.12 | 18.34 | 1.66 | 528 |
| 40 | 7.36 | 944 | 5.76 | 215 | 5.62 | 22.1 | 1.24 | 0.12 | 17.82 | 1.79 | 500 |
| 60 | 7.34 | 963 | 5.73 | 191 | 5.64 | 24.7 | 1.09 | 0.14 | 15.48 | 1.97 | 445 |
| 80 | 7.34 | 975 | 5.73 | 170 | 5.68 | 27.7 | 0.97 | 0.16 | 13.61 | 2.02 | 397 |
| 100 | 7.33 | 1000 | 5.70 | 148 | 5.73 | 31.6 | 0.84 | 0.18 | 11.51 | 2.47 | 346 |
| 120 | 7.22 | 1000 | 5.63 | 113 | 5.74 | 36.3 | 0.64 | 0.21 | 8.81 | 2.89 | 298 |
| 140 | 7.24 | 1000 | 5.62 | 79.3 | 5.75 | 39.5 | 0.45 | 0.23 | 6.16 | 3.14 | 273 |
| 160 | 7.07 | 1000 | 5.40 | 43.1 | 5.75 | 42.5 | 0.23 | 0.24 | 3.29 | 3.46 | 244 |
| 180 | 7.32 | 981 | 5.41 | 21.9 | 5.75 | 45.9 | 0.12 | 0.25 | 1.64 | 3.52 | 235 |
| 200 | 7.34 | 948 | 5.28 | 9.1 | 5.75 | 43.0 | 0.05 | 0.25 | 0.69 | 3.55 | 236 |

依据表3数据，节点A和B的互感系数、接收功率和效率与节点A的高度之间关系如图9所示。

从图9(a)中可以看出，节点A和B的互感系数随节点A的高度增加而降低，特别是在节点A高度为0～160mm段，互感系数下降较快，而相应位置不变的节点B的接收功率和效率随节点A的高度增加而缓慢增加。这说明随着节点A的高度增加，两接收节点的互感降低促使节点B的接收功率和效率增加。从图9(b)和图9(c)中看出，节点A的能量接收效率和功率随节点A高度增加而降低，虽然节点A和B的互感系数随节点A的高度增加而降低，说明节点A和B互感对节点A能量接收影响有限，但节点A能量接收主要受节点A和MC之间磁通量的影响。随着节点A的位置升高，节点A和MC之间磁通量降低，相应地节点A的能量接收效率和功率降低。

![图9 单个节点等高度变化情况下互感变化和节点间传能关系](image)

结论：本文从磁耦合谐振无线传能的基本原理出发，理论分析了接收线圈间互感系数对能量传输的影响，分析了
影响接收线圈间互感系数的因素。最终得出，接收线圈间距，角度和高度直接影响接收线圈间的互感系数。

基于磁耦合谐振WRSNs一对一的充电过程，实验分析接收线圈间距，角度和高度3个因素对接收线圈间互感影响，得出接收线圈间距和高度与接收能量效率和功率成正比，接收线圈角度与接收能量效率和功率成反比。实验结果表明，不同侧的接收线圈间互感系数对接收节点能量传输的影响较大。

参考文献

