Simulations of Queuing System with Part of Preparation Period

LU Xi, CAO Ju

(School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, China)

Abstract: Queuing system with preparation period is that part of the customers have preparation period with probability p, which means they have a period to prepare between arrival time and service time, and the others start the service directly. A program was written to simulate the problem. To simulate different systems, the number of service stations, parameter values, the number of service counters, and the distribution which the preparation period obeyed were adjusted. The research results were obtained through the analysis of performance index and the comparison of queuing graphs. The overall results show that the preparation period will affect the system and aggravate congestion degree.

Keywords: Queuing theory, Preparation period, Simulation

1 引言

排队论来自于生活中的实际问题，在许多服务系统中都有着广泛的应用。以往的排队系统中，一般认为顾客到达后会服务台等待，有服务台空闲就直接接受服务，少有考虑顾客有准备期的问题。其中准备期是指顾客进入系统后，有空闲的服务台时占用服务台而不立即开始服务的时间段，部分带有准备期的顾客数占总体顾客数的比例为准备率。

带有部分准备期的问题在生活中十分常见，例如图书馆和自习室的座位现象，学生资源供学生学习使用，而有些同学在图书馆空闲时或者还未到的同学占座，座位被空占的这段时间就是准备期，去餐厅就时，有时会提前预约，将餐桌看成服务台，预约成功开始用餐时段即可就餐准备期，往往越容易排队的餐厅人们就会选择比较低的值，同样将餐桌看成服务台，顾客的点餐时间一到不占餐桌的情况下完成，也可看作就餐前的准备期，此外，随着打车软件的兴起，越来越多的人选择叫车，司机接受订单到载到该乘客的时间段即为服务前的准备期，在这段时间内下单的乘客并没有接受服务，但其他顾客也无法接受服务。

现实生活有如此多的问题都存在准备期，因而准备期对排队系统服务效率造成怎样的影响，是值得研究的问题，因而，现有的关于排队论的研究中很少看到对此类问题的讨论，在排队系统中，顾客希望等待的时间尽可能短，这就要求服务机构提供较多服务台或提高服务的效率，这无疑会增加投资，所以控制顾客的等待时间可能更为可行，有准备期可以避免，而有些却无法避免，如何有效管理，尽可能提高系统的服务效率，非常具有实际意义。

为了模拟不同拥挤度的排队系统，利用MATLAB进行仿真，以得到定量的结果，与理论方法相比，仿真方法有以下优点：(1) 对于较复杂的排队系统，使用理论方法会遇到困难或无法得到解析解只能得到数值解的情况，有时甚至建立模型都较困难；(2) 对于理论方法得出的数值解，可能在仿真程序中设置相同的参数，验证其正确性，(3) 理论方法在排队系统发生变化时需要重新计算，而在仿真程序中可以直接方便地使用程序中参数或者服从的分布来模拟不同情况的排队系统，更贴近实际情况，便于解决现实中的问题。

通过比较不同系统的仿真结果，可以直观地看到准备期带来的资源浪费，因此可让管理者通过调整或调整顾客在准备状态下占用服务台的时间，对于可避免的状况，可以使用不同的服务台，例如食堂就餐问题，可派服务员提醒同学不可占座，而一些不可避免的情况，例如预约出租车，一定有一段时间的准备期，可以整合打车软件以及电招一个系统中，将车辆订单，尽量缩短准备期的时长。

本文从理论上对部分顾客具有准备期的系统进行建模，利用MATLAB对模型进行仿真，对比分析不同拥挤度，不同
准备率和准备期服从不同分布的情况，得到准备期对系统效率的影响，并对理论值进行比较，验证仿真结果与理论值的正确性。

2 模型描述

（1）输入过程，顾客的输入过程服从参数为 \(\lambda \) 的泊松分布，即顾客到达时间间隔服从负指数分布。顾客到达后排成一列，排队规则为排队，服务台全忙时按先到先服务方式进行。

（2）准备过程，顾客的准备过程服从参数为 \(m \) 的负指数分布，当服务台空闲时，有准备期的顾客先不接受服务，而是占用服务台进行准备。

（3）服务过程，服务过程服从参数为 \(m \) 的负指数分布。没有准备期的顾客在服务台空闲时直接接受服务，有准备期的顾客则在准备过程结束后接受服务。

顾客的输入过程、准备过程与服务过程为独立随机过程（3）。

部分顾客具有准备期的排队系统大体流程如下，顾客到达后先排成一列，然后以概率 \(p \) 做准备，准备后结束后再服务，其余 \(1-p \) 的顾客则直接接受服务，如图1所示。

图1 部分具有准备期流程图

顾客不具有准备期的系统为 \(M/M/c \)，带有准备期的系统记为 \(M/M+M/c \)，其中 \(M+M \) 的第一个 \(M \) 指准备时间，第二个则指服务时间。部分具有准备期的系统以概率 \(p \) 为 \(M/M+M/c, 1-p \) 为 \(M/M/c \)。

3 系统仿真

在研究一般的排队系统时，求得解析解是相当困难的。因此采用 Monte Carlo 方法，即统计实验法，研究研究中顾客到达时间、开始服务时间及离开时间的关系。

以顾客到达系统的时刻为判断的时间点，顾客到达系统时，判断是否有空服务台，有权则直接开始服务，没有空服务台可为两种情况，因为是先到先服务，系统中没有等待的人，即下一个就是这位顾客，可以判断最快结束服务的顾客的离开时间，来确定该顾客开始服务或准备的时间。如果系统中已有人在等待了，则记录等待人数，再确定顾客开始服务或准备的时间。（x+1）

设 \(N \) 为总顾客数，\(T \) 为 \(N \) 运行时间，系统中正准备、等待服务及正在接受服务的顾客数目为队长，即系统中顾客数，有平均队长 \(\bar{N} \)。

\[
\bar{N} = \frac{1}{T} \sum_{i=1}^{N} (a_i - l_i) \Delta t
\]

其中，\(i = 1, 2, \ldots, N \) 为到达人数，\(l_i \) 为离开人数，\(\Delta t \) 为时间间隔。

等待时间是指顾客抵达排队系统直到接受服务的时间，即顾客开始接受服务与到达时间之差，计算得平均等待时间

\[
W_i = \frac{1}{N} \sum_{i=1}^{N} [(s_i - a_i) - (r_i - a_i)]
\]

逗留时间是指顾客在系统中准备的时间，等待时间与服务时间之和，即顾客时间与到达时间之差，计算得平均逗留时间

\[
T_i = \frac{1}{N} \sum_{i=1}^{N} [(l_i - r_i)]
\]

其中，\(s_i \) 为每个顾客到达时间，\(a_i \) 为开始接受服务时间，\(l_i \) 为离开时间。

4 结果分析

在仿真系统中，每位顾客的到达时间间隔、准备时间和服务时间都是服从负指数分布的随机数，设定以上三个分布的参数以及准备率、服务台个数和仿真顾客数，模拟部分准备期的排队系统。

4.1 准备率 \(p \) 对系统的影响

4.1.1 准备率 \(p \) 对系统的影响

设平均到达时间间隔为 \(1 \)，平均准备时间为 \(2 \)，服务时间为 \(5 \)，服务台个数为 \(5 \)，仿真顾客数为 \(200 \)，准备概率取 \(0, 0.5, 1 \)。

图2 为不同的到达时间下，顾客的到达时间与准备概率分别为 \(0, 0.5, 1 \) 时的离开时间。从图2可知，到达时间相同的情况下，随着准备概率 \(p \) 的增加，顾客的离开时间也增加，并且对于越晚到达的顾客，离开时间延长情况越明显。

图3 为不同的到达时间下，准备概率分别为 \(0, 0.5, 1 \) 时的离开时间

图4 为相同的到达时间下，准备概率分别为 \(0, 0.5, 1 \) 时，顾客的等待时间。从图4可知，在到达率为 \(1 \) 服务率为 \(2 \) 时，准备概率为 \(0 \)。系统中顾客等待时间不为零，已出现排队的情况。随着准备概率的增加，顾客的等待时间也增加，对于越早到达的顾客等待时间增加的越多。\(p = 0 \) 时平均等待时间 \(7.406, p = 0.5 \) 时平均等待时间为 \(24.387, p = 1 \) 时平均等待时间为 \(43.769 \)。平均等待时间随 \(p \) 值增加呈上升趋势，与从图4中得到的直观结果相符。
图4为相同的到达时间和服务时间内，准备概率分别为0.0.5时顾客的到达时间，每位顾客的到达时间为等待时间和服务时间的和，服务时间随机生成，与图3相比，其每条线的波动性增强，由于条件不同，顾客的到达时间仍呈现随准备概率p的增加而增加的趋势。p=0时平均到达时间为11.9112，p=0.5时平均到达时间为11.9186，p=1时平均到达时间为15.1855，p=0时准备概率p的增加而增加。

图5为相同的到达时间和服务时间下，准备概率分别为0.0.5.1时的队长。按到达与离开时间排序，计算出每次队长的变化。从图5中可见，p增大时最大队长增大，且最后一位顾客离开的时间也变长。p=0时平均队长为12.8093，最大队长为21.1，p=0.5时平均队长为24.9345，最大队长为47.1，p=1时平均队长为38.4935，最大队长为71.1，与图中信息相符。

图6为服务率p分别为0.0.2.0.25和0.3，取p=0.0.2.0.4，0.6.0.8.1时顾客的平均到达时间，与服务率相同时，平均到达时间随着准备率p由0逐渐增加，大致呈线性增加。服务率为0.2时，准备概率p=0，平均等待时间为8.3112，平均等待时间为38.647，两者之差为32.3271，服务率为0.25时，准备概率p=0，平均等待时间为1.576，平均等待时间为21.1441，两者之差为19.5671，服务率为0.3时，准备概率p=0，平均等待时间为0.667，平均等待时间为10.245，两者之差为8.578。从数据可以看出，服务率较小时准备概率p对平均等待时间的影响较大。

图7不同时间段下的平均等待时间

4.2 仿真结果与理论值的比较

与参考文献[7]中经典排队系统M/M/c的计算结果比较，仿真结果中当到达率λ=0.9，服务率μ=0.4，服务台个数c=3时，平均等待时间为1.89，平均服务时间为4.39，平均队长为3.95。

对仿真程序取相同的参数，设立假个数为1000，准备期的时间p=0，即没有准备过程。多次运行程序，得到表1所列结果。

<table>
<thead>
<tr>
<th>表1 程序运行结果</th>
<th>平均等待时间</th>
<th>平均服务时间</th>
<th>平均队长</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.1871</td>
<td>3.1614</td>
<td>3.2670</td>
</tr>
<tr>
<td>2</td>
<td>1.4666</td>
<td>4.0792</td>
<td>3.2917</td>
</tr>
<tr>
<td>3</td>
<td>1.8462</td>
<td>4.4264</td>
<td>3.8957</td>
</tr>
<tr>
<td>4</td>
<td>2.0607</td>
<td>4.6918</td>
<td>3.9454</td>
</tr>
<tr>
<td>5</td>
<td>1.8286</td>
<td>4.0625</td>
<td>3.2410</td>
</tr>
<tr>
<td>6</td>
<td>1.6470</td>
<td>4.1907</td>
<td>3.7998</td>
</tr>
<tr>
<td>7</td>
<td>2.5268</td>
<td>5.0162</td>
<td>4.0087</td>
</tr>
<tr>
<td>8</td>
<td>1.7187</td>
<td>4.0833</td>
<td>3.7198</td>
</tr>
<tr>
<td>9</td>
<td>1.7578</td>
<td>4.2961</td>
<td>3.7078</td>
</tr>
<tr>
<td>10</td>
<td>1.6124</td>
<td>4.1758</td>
<td>3.7946</td>
</tr>
<tr>
<td>11</td>
<td>2.0156</td>
<td>4.5871</td>
<td>4.2195</td>
</tr>
<tr>
<td>12</td>
<td>2.4661</td>
<td>4.9996</td>
<td>4.5902</td>
</tr>
<tr>
<td>13</td>
<td>1.6149</td>
<td>4.4572</td>
<td>4.2716</td>
</tr>
<tr>
<td>14</td>
<td>1.6562</td>
<td>4.134</td>
<td>3.8577</td>
</tr>
</tbody>
</table>

在仿真程序中顾客的到达时间间隔，服务时间都假定服从负指数分布。因到达间隔离散等都是随机生成的，为削弱随机性，取30组值的均值与理论值进行比较。

对表1中15组仿真结果取均值，得到平均等待时间的均值为1.822853，与理论值1.89相差3.55%；平均服务时间的均值为4.33526，与理论值4.39相差2.54%；平均队长的均值为3.863803，与理论值3.95相差2.18%，可以发现3个指标都较为接近，从而验证了仿真程序的正确性。

4.3 准备时间服从定方法的情况

将程序中准备时间由负指数分布改为定方法分布，定方法分布参数为设定的负指数分布的平均准备时间，以测试准备时间改变对模型分布后会带来哪些影响。

图7为两个排队系统中的顾客具有相同的到达时间和服务时间情况下队长，准备时间服从定方法分布时，顾客的队列时间相同，故此时具有固定的队长和平均队长，分别在表2和表3中，表中平均准备时间的均值为72和39.3679，其中平均准备时间的均值为72，平均队长为40.937。从图中和数据中可以看出，事实队长差距不大。多次运行程序发现，准备时间服从指数分布的队长和平均队长的值分别在72和39.3677上下波动。

- 31 -
5 影响评价

5.1 准备条件 p 对系统的影响

取准备条件 p 为 0.05.1 来模拟顾客没有准备条件时，部分顾客具有准备条件时所有顾客都有准备条件的情况，平均到达时间间隔为 1_{2}，平均准备时间 p_{2}，服务台个数为 $5_n=0.1$，服务台个数 $p_{2}=20$，时，平均等待时间，平均服务时间，平均顾客数均有一定的增加，顾客是否具有准备条件时服务系统有显著的影响。

5.2 准备条件 p 对不同系统的影响

程序中各参数值均随机地进行顺序，同义化时可以根据收集的数据设定服务台个数、顾客以及各项参数分布的参数值，使得服务时间接现实中的服务系统，从而得到零合实际的模拟结果。

取不同的服务率，查看此时准备条件 p 对不同系统的的影响，在不同的服务率下，调整准备条件 p。取 p 为 0.4，有 0 和 1，服务率为 0.25 时，得到平均等待时间的变化为 $19,885_{2}$，平均系统的变化为 $21,979_{2}$，平均服务时间的变化为 $16,027_{2}$，服务率为 0.2 时，得到平均等待时间的变化为 $30,337_{2}$，平均系统的变化为 $32,781_{2}$，平均服务时间的变化为 $19,647_{2}$。比较可得，在服务率较大时，准备条件 p 的变化对系统性能指标的影响较小。

由此认为，顾客是否具有准备条件对系统造成影响，而影响程度与服务系统的繁忙程度有关。服务率较大时，顾客具有准备条件的影响较小，反之顾客选择准备更容易加剧系统拥挤程度，所以在顾客选择准备的排队系统中，尤其是系统处于繁忙状态时，应该倡导或安排顾客尽量不要选择进入准备期，在排队结束之后直接接受服务。例如对于图书或占座位的情况，可以对图书中所有座位候补，每位同学在饭时只能占一个号，该号有对应的位置，这样就可以防止别人占座，从而达到缩短准备期的效果。有的医院在客人开始排队时，会提供简单菜单让客人在等待期间先点菜，这样客人进入餐厅时很快开始就餐，这就是一个安排顾客准备调整准备期的例子。生活中有许多带有准备期的事例，尽可能减短准备期不仅能让我们服务环境变好，节省节省等待时间，也可以节约资源，避免造成不必要的损失。

5.3 变化准备期的分布

在实际应用中，顾客的准备期会服从不同分布。例如食堂占座位问题，坐的进的同学可能会有一个或几个窗口，于是会有不同长度的准备时间，近似认为准备期服从负指数分布。在外就餐时，顾客进入餐厅需要点餐并等待，将就餐前这段等待时间作为准备期，可认为更近似于对数分布，此时系统为 $M/M/D+M/C$。

改善服务过程，将准备时间调整为对数分布，为便于与准备时间负指数分布做比较，将参数值设置成负指数分布中平均准备时间的值。其余参数不变，为消除每次仿真的随机性，对比两个排队系统中的顾客具有相同的到达时间和服务时间情况下，的准备时间服从准备期时，平均准备时间和最大顾客数固定，而准备时间服从负指数分布时由于随机性，平均准备时间和最大顾客数在不同情况的平均准备时间和最大顾客数上下波动。

结束语，带有部分准备期的问题在生活应用中随处可见，却少有对这类问题的研究分析。本文利用 MATLAB 模拟到了到达时间间隔，准备时间和服务时间对负指数分布的系统，通过调整分布参数及准备条件来模拟不同的服务系统，并结合实际生活情况将准备期改为服从对数分布，进行对比分析。在未来阶段，对不同顾客的服务系统还可以设置准备时间 k 为不同分布的其他分布，对到达时间间隔和服务时间也可进行相应变换，从而研究不同条件的带部分准备期的问题。

仿真在解决排队论问题时有许多优点，在排队系统比较复杂时，通过理论方法分析出解较困难，需编程得到数值解，而仿真可以模拟服务系统快速得到定量的结果。在排队系统发生变化时，例如顾客到达率突然增加时，仿真能够方便地调节参数变化，而实际系统则应对这种情况。在面对准备时间服务不同分布的排队系统时，仿真可能部分系统就能模拟实际问题。所以，对于部分准备期这类问题。仿真是一种较好的方式。

参考文献