几类新的笛卡尔乘积互连网络

师海忠
（西北师范大学数学与统计学院 兰州 730070）

摘要 Star网络、Pancake网络、Bubble sort网络、修正Bubble sort网络（又称圈图）、旋轮图等都既为Cayley图又是重要的互连网络。利用图的笛卡尔乘积方法构建了几类新的笛卡尔乘积互连网络：环网、循环移数网络、ILILAC网络、超立方体分别与Star网络、Pancake网络、Bubble sort网络、修正Bubble sort网络、旋轮图的笛卡尔乘积网络；这些网络的某些性能指标（例如，直径等）比Star网络或超立方体更好。

关键词 Cayley图，互连网络，笛卡尔乘积网络，超立方体，Star网络

中图法分类号 TP393 文献标识码 A

Some New Cartesian Product Interconnection Networks

SHI Hai-zhong
(College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China)

Abstract Star network, pancake network, bubble sort network, modified bubble sort network, wheel network, etc., are not only Cayley graphs but also important interconnection networks. In this paper, we develop many new networks, called Cartesian product networks of the ring network, the barrel shifter network, the ILILAC networks, the n-cube and the Star network, the pancake network, the bubble sort network, the modified bubble sort network, the wheel network, respectively. These networks are shown to have better performance, as measured by some parameters (such as, diameter, etc.) than the n-cubes or the Star networks.

Keywords Cayley graph, Interconnection network, Cartesian product interconnection network, n-cube, Star network

1 引言

一个处理机/通信互连网络常常模型化为一个无向图。这个图中的顶点对应于处理机/通信端口，边对应于通信链路，在这个互连网络中它的关键特性有顶点度、直径、阻塞、对称性、连通度，路由选择算法以及结构。在设计对称互连网络时，总的目标是设计具有小的度、小的直径、低度度、简单的路由选择算法以及巨大顶点数的对称图。立方体Q、Star网络S、Pancake网络P等都是非常著名的互连网络，但它们各有优缺点[1-4]。所以希望设计出有更多优良性能的互连网络。图的笛卡尔乘积方法是设计互连网络的一类重要方法[4]。在本文中，利用笛卡尔乘积方法设计了各种互连网络，并指出了它们所具有的优良性能。本文第2节是环网Cn与几类Cayley图的笛卡尔乘积；第3节是循环移数网络BSi与几类Cayley图的笛卡尔乘积；第4节是ILILAC网络G(n²; ±(1,n))与几类Cayley图的笛卡尔乘积；第5节是n立方体与几类Cayley图的笛卡尔乘积，最后是结束语。

2 环网Cn与几类Cayley图的笛卡尔乘积

环网Cn是无向图，是循环无向图G(n, ±1)，也是Cayley图Cn(±(1))或Cn(±(1,n-1))，该网络的连通度为2，直径为d(Cn)=\[1/2 \ n\]。
引理 3*] 如果对每个 \(i = 1, 2, \ldots, n \) 均有 \(k(G_i) > 0 \)，那么 \(k(G_1 \times G_2 \times \cdots \times G_n) \geq k(G_1) + k(G_2) + \cdots + k(G_n) \)。这里 \(G \) 表示图 \(G \) 的连通度。

引理 4*] Cayley 图的笛卡尔乘积仍是 Cayley 图，更精确地讲，设 \(G = C_r(S) \) 是有限群 \(\Gamma = (X, a) \) 关于集合 \(S \) 的 Cayley 图，那么 \(G = G_1 \times G_2 \times \cdots \times G_n \) 是群 \(\Gamma_1 \times \Gamma_2 \times \cdots \times \Gamma_n \) 关于集合 \(S = \bigcup_i \{ e, \epsilon, \epsilon^2, \cdots, \epsilon^{n_i-1} \} \times \{ e_{i+1}, e_{i+2}, \cdots, e_n \} \) 的 Cayley 图 \(C_r(S) \)，其中 \(e_i \) 是 \(\Gamma_i \) 的单位元，\(i = 1, 2, \ldots, n \)。

引理 5*] Cayley 图 \(C_r(S) \) 是点对称的（即点可迁的）。

引理 6*] 设 \(G \) 和 \(G_2 \) 是无向图，\(G_1 \times G_2 \) 是 Hamilton 图当且仅当 \(G \) 和 \(G_2 \) 之一是 Hamilton 图，而另一个含 Hamilton 路。

2.1 环网 \(C_m \) 与立方体 \(Q_n \) 的笛卡尔乘积网络 \(C_m \times Q_n \)

\(m \) 立方体 \(Q_n \) 的基本性质可概括如下：

定理 7 a) 是正则的连通图，有 2 个顶点和 \(m \cdot 3 \) 条边；

b) 是二部分图；

c) 若 \(m \geq 2 \) 则 \(Q_n \) 是 Hamilton 图。若 \(m \) 是偶数，则 \(Q_n \) 是 Euler 图；

d) 是可控的；

e) 是可控的。

由引理 1 — 引理 6 及引理 7 知，环网 \(C_m \) 与立方体 \(Q_n \) 的笛卡尔乘积网络 \(C_m \times Q_n \) 有下列性质：

定理 8 a) \(C_m \times Q_n \) 有 \(m \cdot n \) 个顶点、\((n+1)! \) 条边，是正则的连通图；

b) 是二部分图；

c) 是连通的 \(k(C_m \times Q_n) = m + 1 \)；

d) 是 Hamilton 图；

固定 \(m \)（例如 \(m = 7 \) 或者 8）, 就可以得到新互连网络，例如 \(C_m \times S_m \) 等。

猜想 2 \(C_m \times S_m \) 是 Hamiltonian 可分解的。

特别地, \(C_m \times S_m \) 有 3 \((m!) \) 个顶点，比 \(S_m \) 的顶点数扩大 3 倍，但直径仅增加 1。即 \(d(C_m \times S_m) = d(S_m) + 1 \)，所以 \(C_m \times S_m \) 优于 \(S_m \)。

2.2 环网 \(C_m \) 与 Pancake 网络 \(P_n \) 的笛卡尔乘积网络 \(C_m \times P_n \)

Pancake 网络定义为 Cayley 图 \(C_r(P) \)；其中 \(\Gamma = \{ 0 \} \times \{ 1, 2, \ldots, n \} \)。Pancake 网络有下列性质：

定理 9 a) \(C_m \times P_n \) 有 \(m! \cdot n \) 个顶点、\(n+1 \cdot (n+1)! \) 条边，是正则的连通图；

b) 是 Hamilton 图；

c) 是 Hamilton 图。

由引理 4 — 引理 6 及引理 9 可知，具有下列性质：

定理 10 a) \(C_m \times P_n \) 有 \(m! \cdot n \) 个顶点、\((n+1)! \) 条边，是正则的连通图；

b) 是 Hamilton 图；

c) 是 Hamilton 图。

我们提出一个开问题：\(C_m \times P_n \) 的直径是多少？

猜想 3 \(C_m \times P_n \) 是 Hamiltonian 可分解的。
2.4 环网 G 与 Bubble sort 网络 B 的笛卡尔乘积网络 $G \times B$

Bubble sort 网络 B 定义为 Cayley 图 $G \times B$，其中，$\Gamma = S_m$ 为 $(1, 2, \cdots, m)$ 上的对称群，$B = \{(i+1)(i+2)\cdots m \mid i=1, 2, \cdots, m-1\}$。

Bubble sort 网络有如下性质：

引理 10 (a) B_m 有 $m!$ 个顶点，$\frac{m(m-1)}{2}$ 条边，是 $m-1$ 正则的连通图；

(b) B_m 的直径为 $\sqrt{m(m-1)}$；

c) B_m 是点对称的；

d) B_m 的连通度为 $m-1$；

e) 是 Hamilton 图。

2.5 环网 G 与修正 Bubble sort 网络 Y 的笛卡尔乘积网络 $G \times Y$

修正 bubble sort 网络 Y 定义为 Cayley 图 $C_r(Y)$，其中，$\Gamma = S_m$ 为 $(1, 2, \cdots, m)$ 上的对称群，$Y = \{i+1, i+2, \cdots, m \mid 1 \leq i \leq m-1\}$。

修正 bubble sort 网络有如下性质：

定理 5 (a) $C_m \times X_n$ 有 $n \cdot m!$ 个顶点，$\frac{1}{2}(m+1)!$ 条边，是 $m+1$ 正则的连通图；

(b) $C_m \times X_n$ 的直径为 $\frac{m}{2} + \frac{1}{2}(m-1)$；

c) $C_m \times X_n$ 是 Hamilton 图。

3 循环移数网络 (barrel shifter) BS_n 与几类 Cayley 图的笛卡尔乘积

循环移数网络 (barrel shifter) BS_n 定义为 Cayley 图 $C_r(S)$，其中，$\Gamma = \mathbb{Z}_2 \times S_m$，$S = \{\pm 2^i \mid 0 \leq i \leq n-1\}$。

循环移数网络 BS_n 有如下性质：

引理 13 (a) BS_n 有 n 个顶点，2^n 条边，是 n 正则的连通图；

(b) BS_n 是点对称的；

c) BS_n 是 Hamilton 图。

3.1 BS 与 m-立方体 Q_m 的笛卡尔乘积网络 $BS_n \times Q_m$

由引理 1 引理 6 引理 11 知，环网 G 和修正 bubble sort 网络 Y 的笛卡尔乘积网络 $G \times Y$ 有如下性质：

定理 7 (a) $BS_n \times Q_m$ 有 2^n 个顶点，$2^n \cdot m$ 条边，是 $2n-1$ 正则的连通图；

(b) $BS_n \times Q_m$ 的直径为 $\frac{2^n}{2} + m$；

c) $BS_n \times Q_m$ 是 Hamilton 图。
显 然 , $B_S \times Q_n$ 和 Q_{n+m} 都有 $2n + m$ 个顶点 , 但 $B_S \times Q_n$ 的\n直径 $d(B_S \times Q_n) = \left\lfloor \frac{n}{2} \right\rfloor + m$ 远小于 Q_{n+m} 的直径 $d(Q_{n+m}) = n + m$, 因此 $B_S \times Q_n$ 优于 Q_{n+m} 。当然 , 直径小的代价是增加了\n顶点数。

3.2 B_S 与 Star 网络 S_m 的笛卡尔乘积网络 $B_S \times S_m$

由引理 1一引理 6、引理 7 及引理 13 知 , $B_S \times S_m$ 有下\n列性质 :

引理 14 a) $B_S \times S_m$ 有 $2 \cdot m!$ 个顶点 、$(2n + m - 1) \cdot \frac{2 \cdot m!}{2} = (n-1) + m$ 条边 , 是 $2 + m$ 正则的连通图 ；

b) $B_S \times S_m$ 是 Cayley 图 $C_r(S)$ ；

$\Gamma = Z^m \times S_m$ ；

$S = \{(i-1) \cdot (i+1) \cdot m \leq i \leq m\}$ ；

c) $B_S \times S_m$ 是点对称的(即点可迁的) ；

d) $B_S \times S_m$ 是 Hamilton 图 ；

猜想 8 $B_S \times S_m$ 是 Hamilton 可分解的 ；

特别地, $B_S \times S_m$ 有 $16 \cdot m!$ 个顶点 , 是 S 的顶点数 $m!$ 的 16 倍 , 但 $B_S \times S_m$ 的直径仅比 S 的直径增大了 2 。

3.3 B_S 与 Pancake 网络 P_m 的笛卡尔乘积网络 $B_S \times P_m$

由引理 1一引理 6、引理 9 及引理 13 知 , $B_S \times P_m$ 有如下\n列性质 :

定理 9 a) $B_S \times P_m$ 有 $2 \cdot m!$ 个顶点 、$(2n + m - 1) \cdot \frac{2 \cdot m!}{2} = n + m$ 条边 , 是 $2 + m$ 正则的连通图 ；

b) $B_S \times P_m$ 是 Cayley 图 $C_r(S)$ ；

$\Gamma = Z^m \times P_m$ ；

$S = \{(i-1) \cdot (i+1) \cdot m \leq i \leq m\}$ ；

c) $B_S \times P_m$ 是点对称的(即点可迁的) ；

d) $B_S \times P_m$ 有 $64 \cdot m!$, 是 S 的顶点数 $m!$ 的 64 倍 , 但 $B_S \times P_m$ 的直径 $\left\lfloor \frac{m}{2} \right\rfloor \frac{m}{2} (m-1)$ 仍增加了 m , 所以就这一点而言 , $B_S \times P_m$

比 B_m 优。

猜想 10 $B_S \times B_m$ 是 Hamiltonian 可分解的 ；

3.5 B_S 与修正 Bubble sort 网络 Y_m 的笛卡尔乘积网络 $B_S \times Y_m$

由引理 4一引理 6、引理 11 及引理 13 知 , $B_S \times Y_m$ 有如下\n性 质 :

定理 10 a) $B_S \times Y_m$ 有 $2 \cdot m!$ 个顶点 、$(2n + m - 1) \cdot \frac{2 \cdot m!}{2} = n + m$ 条边 , 是 $2 + m$ 正则的连通图 ；

b) $B_S \times Y_m$ 是 Cayley 图 $C_r(B)$ ；

$\Gamma = Z^m \times S_m$ ；

$B_n = \{(i-1) \cdot (i+1) \cdot 2 \leq i \leq m\}$ ；

c) $B_S \times Y_m$ 是点对称的(即点可迁的) ；

d) $B_S \times B_m$ 是 $B_S \times Y_m$ 的一个生成子图(同构意义下)，即 $B_S \times B_m$ 以膨胀数 (dilation) 1, 拥塞 1 以及负载 1 嵌入 $B_S \times Y_m$，且该嵌入的膨胀率为 1。

猜想 11 $B_S \times Y_m$ 是 Hamilton 可分解的 ；

3.6 B_S 与轮图 W_m 的笛卡尔乘积网络 $B_S \times W_m$

由引理 4一引理 6、引理 12 及引理 13 知 , $B_S \times W_m$ 有如下\n性 质 :

定理 11 a) $B_S \times W_m$ 有 $2 \cdot m!$ 个顶点 、$(2n + m - 1) \cdot \frac{2 \cdot m!}{2} = n + m$ 条边 , 是 $2 + m$ 正则的连通图 ；

b) $B_S \times W_m$ 是 Cayley 图 $C_r(B)$ ；

$\Gamma = Z^m \times W_m$ ；

$B_n = \{(i-1) \cdot (i+1) \cdot 2 \leq i \leq m\}$ ；

c) $B_S \times W_m$ 是 Hamilton 图 ；

进一 步我们提出一开问题 : $B_S \times W_m$ 的直径是多少 ?

猜想 12 $B_S \times W_m$ 是 Hamiltonian 可分解的 ；

4 ILLIAC 网络 $G(n^2; \pm \{1, n\})$[7-10] 与几类 Cayley\n图的笛卡尔乘积网络

ILLIAC 网络 $G(n^2; \pm \{1, n\})$ 网络定义为 Cayley 图 $C_r(S)$ ；

$\Gamma = Z^n$ ；

$S = \{(i-1) \cdot (i+1) \cdot \pm \{1, n\}\}$ ；

ILLIAC 网络 $G(n^2; \pm \{1, n\})$ 有如下性质 :

引理 15(a) $G(n^2; \pm \{1, n\})$ 有 n^2 个顶点 、$2n^2$ 条边 , 是 n 正则的连通图 ；

b) $G(n^2; \pm \{1, n\})$ 的直径为 $n - 1$ ；

c) $G(n^2; \pm \{1, n\})$ 是点对称的(即点可迁的) ；

d) $G(n^2; \pm \{1, n\})$ 是 Hamilton 图 ；

猜想 13 $G(n^2; \pm \{1, n\})$ 是 Hamiltonian 可分解的 , 即 $G(n^2; \pm \{1, n\})$ 是两个边不交 Hamiltonian 圈的并。

4.1 $G(n^2; \pm \{1, n\})$ 与 m 立方体 Q_m 的笛卡尔乘积网络 $G(n^2; \pm \{1, n\}) \times Q_m$

由引理 4一引理 6、引理 7 及引理 15 知 , $G(n^2; \pm \{1, n\}) \times Q_m$ 有下列性质 :

定理 12 a) $G(n^2; \pm \{1, n\}) \times Q_m$ 有 $n^2 \cdot 2^m$ 个顶点 , 有 $(m+4)$
2.1 条边，是 $m+4$ 正则的连通图；
b) $G(n, \pm \{1, n\}) \times Q_m$ 的直径是 $m+3$；
c) $G(n, \pm \{1, n\}) \times (Q_m \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \cdots \times \mathbb{Z}_2)$，
 $I = (\pm 1, \pm 1, \cdots, 0) \cup (0, 0, 0, 0, \cdots, 0)$；
d) $G(n, \pm \{1, n\}) \times \mathbb{Z}_2$ 是 Hamilton 图。

猜想 14 $G(n, \pm \{1, n\}) \times Q_m$ 是 Hamiltonian 可分解的。

特别地，$G(n, \pm \{1, n\}) \times Q_m$ 的顶点数为 $2m+1$ 个顶点。

2.2 $G(n, \pm \{1, n\}) \times S_m$ 的笛卡尔乘积网络 $G(n, \pm \{1, n\}) \times S_m$ 有下列性质：

定理 13 a) $G(n, \pm \{1, n\}) \times S_m$ 有 $n \cdot m!$ 条边，是 $m+3$ 正则的连通图；
b) $G(n, \pm \{1, n\}) \times S_m$ 的直径是 $n-1+\left\lceil \frac{3(m-1)}{2} \right\rceil$；
c) $G(n, \pm \{1, n\}) \times S_m$ 是 Cayley 图 $C_r(J)$；
 $r = 2^2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \cdots \times \mathbb{Z}_2$，
 $J = (\pm 1, \pm 1, \cdots, 0) \cup (0, 0, 0, 0, \cdots, 0)$；
d) $G(n, \pm \{1, n\}) \times S_m$ 是 Hamilton 图；
e) $G(n, \pm \{1, n\}) \times S_m$ 是点对称的（即点可迁的）。

4.2 $G(n, \pm \{1, n\}) \times S_m$ 是 Hamiltonian 可分解的。

由引理 1 引理 6，引理 8 及引理 15 知，$G(n, \pm \{1, n\}) \times S_m$ 有下列性质：

定理 13 a) $G(n, \pm \{1, n\}) \times S_m$ 有 $n \cdot m!$ 条边，是 $m+3$ 正则的连通图；
b) $G(n, \pm \{1, n\}) \times S_m$ 的直径是 $n-1+\left\lceil \frac{3(m-1)}{2} \right\rceil$；
c) $G(n, \pm \{1, n\}) \times S_m$ 是 Cayley 图 $C_r(J)$；
 $r = 2^2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \cdots \times \mathbb{Z}_2$，
 $J = (\pm 1, \pm 1, \cdots, 0) \cup (0, 0, 0, 0, \cdots, 0)$；
d) $G(n, \pm \{1, n\}) \times S_m$ 是 Hamilton 图；
e) $G(n, \pm \{1, n\}) \times S_m$ 是点对称的（即点可迁的）。

4.3 $G(n, \pm \{1, n\}) \times S_m$ 是 Hamiltonian 可分解的。

4.4 $G(n^2, \pm \{1, n\}) \times P_m$ 是 Hamiltonian 可分解的。

4.5 $G(n^2, \pm \{1, n\}) \times S_m$ 是 Hamiltonian 可分解的。

4.6 $G(n, \pm \{1, n\}) \times W_m$ 是 Hamiltonian 可分解的。

开问题：$G(n^2, \pm \{1, n\}) \times P_m$ 的直径是多少？
5. n-立方体 Q_n 与 Cayley 图的笛卡儿乘积网络

5.1 n-立方体 Q_n 与 Star 网络 S_n 的笛卡儿乘积网络 $Q_n \times S_n$

由引理1～引理6，引理7及引理8知，$Q_n \times S_n$ 有下列性质；

定理18 a) $Q_n \times S_m$ 有 $2^n \cdot m$ 个顶点，有 $(n+m-1) \cdot n^{m-1} \cdot m+1$ 条边，是 $n+m-1$ 正则的连通图；

b) $Q_n \times P_m$ 是 Cayley 图 $C_n(D)$；

$\Gamma = Z_n \times Z_n \times \cdots \times Z_n \times S_m$，

$I = ((0,0,0,0,\cdots,0) \times (12\cdots m)) \cup \{(00 \cdots 0) \times (i-1) \times (i+1) \times m | 2 \leq i \leq m \}$；

c) $Q_n \times S_m$ 是点对称的（即点可迁的）；

d) $Q_n \times S_m$ 是 Hamilton 图；

e) $Q_n \times S_m$ 的直径为 $n+\log_2(m+1)$；

猜想20 $Q_n \times S_m$ 是 Hamiltonian 可分解的。

特别地，$Q_n \times S_m$ 有 $2^n \cdot 8!$ 个顶点，Q_{n+15} 有 2^{n+15} 个顶点，易知 $2^n \cdot 8! > 2^{n+15}$，但 $Q_n \times S_m$ 的直径为 $n+15$，显然 $n+10 < n+15$；另外，$Q_n \times S_m$ 的顶点度为 $n+7$，而 Q_{n+15} 的顶点度为 $n+15$。总之，$Q_n \times S_m$ 优于 Q_{n+15}。

5.2 n-立方体 Q_n 与 Pancake 网络 P_m 的笛卡儿乘积网络 $Q_n \times P_m$

由引理1～引理6，引理7及引理9知，$Q_n \times P_m$ 有下列性质；

定理19 a) $Q_n \times P_m$ 有 $2^n \cdot m$ 个顶点，有 $(n+m-1) \cdot 2^{m-1} \cdot m$ 条边，是 $n+1$ 正则的连通图；

b) $Q_n \times P_m$ 是 Cayley 图 $C_n(D)$；

$\Gamma = Z_n \times Z_n \times \cdots \times Z_n \times S_m$，

$I = ((0,0,0,0,\cdots,0) \times (12\cdots m)) \cup \{(00 \cdots 0) \times (i-1) \times (i+1) \times m | 2 \leq i \leq m \}$；

c) $Q_n \times P_m$ 是点对称的（即点可迁的）；

d) $Q_n \times P_m$ 是 Hamilton 图。

我们提出一个开问题：$Q_n \times P_m$ 的直径是多少？

猜想21 $Q_n \times P_m$ 是 Hamiltonian 可分解的。

5.3 n-立方体 Q_n 与 Bubble Sort 网络 B_m 的笛卡儿乘积网络 $Q_n \times B_m$

由引理1～引理6，引理7及引理10知，$Q_n \times B_m$ 有下列性质；

定理20 a) $Q_n \times B_m$ 有 $2^n \cdot m$ 个顶点，有 $(n+m-1) \cdot 2^{m-1} \cdot m$ 条边，是 $n+m-1$ 正则的连通图；

b) $Q_n \times B_m$ 是 Cayley 图 $C_n(D)$；

$\Gamma = Z_n \times Z_n \times \cdots \times Z_n \times S_m$，

$I = ((0,0,0,0,\cdots,0) \times (12\cdots m)) \cup \{(00 \cdots 0) \times (2i-2) \times (i+1) \times m | 2 \leq i \leq m \}$；

c) $Q_n \times B_m$ 的直径为 $n+\log_2(m+1)$；

d) $Q_n \times B_m$ 是 Hamilton 图。

猜想22 $Q_n \times B_m$ 是 Hamiltonian 可分解的。

5.4 n-立方体 Q_n 与修正 bubble sort 网络 Y_m 的笛卡儿乘积网络 $Q_n \times Y_m$

由引理1～引理6，引理7及引理11知，$Q_n \times Y_m$ 有下列

定理21 a) $Q_n \times Y_m$ 有 $2^n \cdot m$ 个顶点，有 $(n+m) \cdot 2^{m-1} \cdot m$ 条边，是 $n+m$ 正则的连通图；

b) $Q_n \times Y_m$ 是 Cayley 图 $C_n(D)$；

$\Gamma = Z_n \times Z_n \times \cdots \times Z_n \times S_m$，

$I = ((000 \cdots 0,010 \cdots 0,\cdots,000 \cdots 0) \times (12\cdots m)) \cup \{(000 \cdots 0) \times (2i-2) \times (i+1) \times m | 2 \leq i \leq m \}$；

c) $Q_n \times Y_m$ 是点对称的（即点可迁的）；

d) $Q_n \times Y_m$ 是 Hamilton 图；

猜想23 $Q_n \times Y_m$ 是 Hamiltonian 可分解的。

结束语 一个并行计算机最根本的功效很大程度上依赖于连接处理器与存储器（或处理器）的互连网络。一个互连网络的性能优良的指标有小的固定的顶点度、小通信传输延迟（小直径或平均距离）。简单的路由算法中，要使对称性、高容错性（高连通度）、可嵌入性等所有指标都达到最优是不可能的。这就使得互连网络有了更大的空间，本文利用图的笛卡儿乘积方法设计了多种互连网络，并指出了它们的部分优良性能，这些互连网络的其他性能还有待进一步探讨。另外，我们还提出了多个猜想供后续研究。

参考文献

5 性能测试

5.1 测试数据集说明

根据程序输入包与网卡输入不一致这种故障发生时分布式系统相关数据指标的特点，人工构造 50 组故障数据，将这些随机输入采集的真实网络流量中，构成最终用于系统性能测试的模型数据集。真实网络流量采集的方法和模拟故障数据的构造方法如下：

真实网络流量：通过 DCEP 的分布式采集节点，我们连续 24 个小时采集这个分布式网络系统的事件流信息。

模拟故障数据：该分布式网络系统正常运行时，网卡出流量和程序流量的数值差不应超过 20%。我们统计分析真实数据集，得出一个工作周期内流水量的值和最小值。分别记为 max 和 min。在构造每组故障数据时，通过 rand()函数生成区间[min,max]]上的伪随机数，将该值作为程序输入流量的数值。然后，通过 rand()函数生成区间(0.70, 0.80)或区间(1.20, 1.30)上的伪随机数，将该值记为 rate。程序输入流量 * rate 的数值作为网卡输入流量的数值。

5.2 系统性能测试结果与分析

通过我们编写的模拟器程序重放测试数据集数据，模拟分布式系统事件信息采集代理定时采集某个分布式系统事件流信息的过程，性能测试结果与分析如下：

1) 系统在运行时检测出测试数据集中的“输入包与网卡输入不一致”故障 49 个，并将发生故障的设备和程序的准确位置，正确率达到 98%。

2) 系统检测出“输入包与网卡输入不一致”故障并进行报警共计算时 44s，具有较高的时效性。

(上接第 270 篇)

【结束语】面对分布式网络系统对系统故障及时发现并准确定位的应用需求，我们提出基于复杂事件处理的故障定位方法。在此基础上，我们开发了故障定位系统 DCEP，用以验证基于复杂事件处理的故障定位方法的可行性。我们对故障定位系统 DCEP 的功能进行了测试，测试结果显示，该系统具有较高的故障检测效率特点和较短的时效性，进一步验证了基于复杂事件处理的故障定位方法的有效性。DCEP 作为理论验证性的原型系统，在后续的研究中可以对系统功能进行进一步的完善和研究。

参考文献

[14] 师海忠, 段建波. 关于互连网络的几个猜想[J]. 计算机工程与应用, 2008, 44(31); 112-115